Funding for this project has been provided by Agriculture and Agri-Food Canada (AAFC) and the BC Ministry of Agriculture through the Canada-BC Agri-Innovation Program under *Growing Forward 2*, a federal-provincial-territorial initiative. The program is delivered by the Investment Agriculture Foundation of BC (IAF).

Additional funding was provided by Western Grains Research Foundation (WGRF) and the BC Peace River Grain Industry Development Council.

AAFC, the BC Ministry of Agriculture, IAF and WGRF are committed to working with industry partners. Opinions expressed in this document are those of the BC Grain Producers Association and not necessarily those of AAFC, the Ministry of Agriculture IAF or WGRF.

CANADA WESTERN RED SPRING WHEAT

As grain yields increase, protein content generally decreases. Some of the newer varieties have both higher protein and grain yield. To control true loose smut of wheat, only a systemic fungicide will work as the pathogen is found inside the seed. To control the other types of smut (covered, false loose and bunt), a non-systemic fungicide seed treatment will work as the disease pathogen is on the outside of the seed.

CWRS Whe	at						Yield	as %	of Kate	pwa	
		Dawson (Creek			Fort St.	John		B.	C. Peac	æ
	2014	4 Yield	2009) - 2014	201	4 Yield	2009	- 2014	2014	2009)-2014
Variety	bu /	% of	Avg.	Station	bu /	% of	Avg.	Station	Avg.	Avg.	Station
	acre	Check	(%)	Years	acre	Check	(%)	Years	(%)	(%)	Years
5604HR CL	70	99	97	[6]	60	92	99	[6]	95	98	[12]
5605HR CL	75	105	107	[2]	67	102	106	[2]	104	107	[4]
AAC Bailey	77	106	105	[4]	65	97	104	[4]	101	105	[8]
AAC Brandon	84	118	109	[3]	74	114	118	[3]	116	113	[6]
AAC Elie	85	119	111	[3]	71	109	117	[3]	114	114	[6]
AAC Iceberg **	76	105	106	[2]	61	93	101	[2]	99	104	[4]
AAC Prevail *	77	106	106	[1]	66	100	100	[1]	103	103	[2]
AAC Redwater	75	104	100	[3]	60	90	100	[3]	97	100	[6]
AAC W1876 *	82	113	113	[1]	71	107	107	[1]	110	110	[2]
AC Barrie	63	87	94	[6]	67	103	104	[6]	95	99	[12]
BW479 * ∆	64	88	88	[1]	52	79	79	[1]	84	84	[2]
BW487 * ∆	78	111	111	[1]	72	112	112	[1]	112	112	[2]
BW961 *, *** Δ	69	96	96	[1]	66	99	99	[1]	98	98	[2]
Cardale	77	106	104	[3]	70	106	108	[3]	106	106	[6]
CDC Abound	78	110	112	[6]	67	103	115	[6]	107	114	[12]
CDC Alsask	80	110	104	[6]	67	100	107	[6]	105	105	[12]
CDC Go	74	103	103	[6]	68	104	110	[6]	103	107	[12]
CDC Osler	75	103	102	[6]	66	100	104	[6]	102	103	[12]
CDC Plentiful	78	109	105	[3]	70	106	108	[3]	108	106	[6]
CDC Stanley	73	101	102	[6]	66	101	107	[6]	101	105	[12]
CDC Thrive	76	106	99	[6]	65	99	109	[6]	103	104	[12]
CDC Titanium	73	101	98	[2]	69	105	101	[2]	103	99	[4]
CDC Utmost	75	105	103	[6]	65	99	108	[6]	102	106	[12]
CDC Whitewood **	73	101	100	[2]	66	101	98	[2]	101	99	[4]
Coleman	67	93	94	[2]	60	90	92	[2]	91	93	[4]
HW363 *, ** ∆	85	116	116	[1]	63	94	94	[1]	105	105	[2]
Infinity	79	110	106	[6]	69	104	112	[6]	107	109	[12]
Katepwa	74	100	100	[6]	67	100	100	[6]	100	100	[12]
PT245 * ∆	79	107	107	[1]	70	105	105	[1]	106	106	[2]
PT637 *∆	72	99	99	[1]	64	97	97	[1]	98	98	[2]
PT769 *∆	70	95	95	[1]	66	98	98	[1]	97	97	[2]
Shaw	72	101	103	[6]	64	97	109	[6]	99	106	[12]
Stettler	73	103	111	[5]	68	105	116	[5]	104	114	[10]
Superb	77	110	112	[6]	67	104	121	[6]	107	116	[12]
Thorsby	70	96	97	[2]	70	104	102	[2]	100	100	[4]
Unity	79	112	108	[6]	65	99	111	[6]	106	109	[12]

* first year tested, very limited data available

 Δ denotes materials not registered

** CWHWS Canadian Western Hard White Spring Wheat

BW487 and BW961 are GP (general purpose) wheat AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

*** semi-dwarf type

CDC Thrive, CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties

CDC Titanium, CDC Utmost, Shaw, and Unity are Varietal Blends and thus Wheat Midge Resistant varieties

Data above is composed of two trials per site. Coefficient of Variance (CV) values in 2014

Katepwa check variety

for original raw yield data is: DC = 6.83%, 9.09%; FSJ = 9.39%, 4.76%.

CWRS Wheat

Variety Descriptions

	В.	C. Pea	ce Aver	ages			Al	berta A	gdex	100/32	2		
Variety	Days to Maturity +/- check	Height	Bushel Weight	Ke Prote +/- c	rnel ein % heck	odging	sprouting	Smut	Common Sunt	stripe	eaf Spot	HB	Distributor
	5.0	0.4	05		[40]		0	<u> </u>	<u> </u>			<u> </u>	
5604HR CL	-5.0	84	65	0	[12]	G	G	P	F	XX	Р	F	Crop Production Services
5605HR CL	2.0	97	66	0	[4]	G	XX	VG	G	+	P	G	Crop Production Services
AAC Balley	-1.5	92	65	0	[8]	G	G	Р		F	+	F	Canterra Seeds
AAC Brandon	1.4	78	65	0	[6]	G	P 	G	VP	G	+	G	Secan
AAC Elie	1.6	78	65	0	[6]	G	F	F	F	G	F	F	Alliance Seed Corporation
AAC Iceberg **	1.6	86	66	-1	[4]	G	Ρ	Р	F	G	Ρ	F	Alliance Seed Corporation
AAC Prevail *	1.0	90	65	-1	[2]								AAFC: Lacombe
AAC Redwater	-2.9	85	65	1	[6]	G	VG	Р	F	G	Р	F	SeCan
AAC W1876 *	5.8	80	65	0	[2]								AAFC: Lacombe
AC Barrie	-0.1	85	65	1	[12]	G	G	G	F	VP	Ρ	F	SeCan
BW479 * ∆	5.3	91	65	2	[2]								Syngenta
<i>BW4</i> 87 * ∆	3.3	83	68	-1	[2]								AAFC: Morden
BW961 *, *** Δ	4.3	76	65	0	[2]								AAFC: Lacombe
Cardale	-0.4	80	64	0	[6]	G	G	F	VP	G	Ρ	G	Seed Depot
CDC Abound	0.8	78	65	0	[12]	G	F	F	F	Р	Ρ	VP	Crop Production Services
CDC Alsask	-0.7	87	63	0	[12]	F	G	G	G	F	VP	Р	Crop Production Services
CDC Go	-1.5	77	64	0	[12]	G	VP	Р	F	G	VP	Р	public variety
CDC Osler	-2.1	82	64	0	[12]	G	F	G	G	F	F	VP	public variety
CDC Plentiful	-0.8	86	65	0	[6]	VG	Р	VG	F	G	F	G	FP Genetics
CDC Stanley	-1.2	82	64	0	[12]	G	G	G	VP	F	F	Р	Crop Production Services
CDC Thrive	-1.8	84	64	0	[12]	G	Р	G	F	F	F	Р	SeCan
CDC Titanium	-1.0	92	66	1	[4]	G	Р	G	F	VG	Р	G	Crop Production Services
CDC Utmost	-0.2	84	64	0	[12]	G	G	P	VP	F	F	P	EP Genetics
CDC Whitewood **	0.4	85	65	-1	[4]	G	G	VP	VP	F	P	F	U of S
Coleman	-0.4	97	66	0	[4]	F	P	VP	VP	G	F	G	SeCan
HW363 * ** A	0.4	77	65	0	[7] [2]			vi	vi	0		0	
Infinity	0.0	84	64	0	[<u>-</u>] [12]	G	G	G	G	Þ	P	VP	Canterra Seeds
Katonwa	0.0	80	64 64	0	[12]	F	F	G	G	P	P	F	SeCan
	0.0	76	64	0	[12]	-	-	0	0	<u> </u>	-	•	
PT245 A	2.3	70	04	0	[2]								AAFC. Lacompe
	2.5	91	00	1	[2]								Syngenia
	-1.4	88	64 67	0	[2]	~	~		~	-	P	F	U OT A
Snaw	-0.9	ŏ/	65	1	[12]	G	G	VP	G	+	۲	Р -	Secan
Stettler	0.9	80	65	1	[10]	G	G	VG	F	F	VP	P	AAFC: Lacombe
Superb	1.0	82	65	0	[12]	G	F	F	G	VP	VP	Ρ	SeCan
Thorsby	1.1	93	65	0	[4]	G	F	F	VP	VG	Ρ	F	U of A
Unity	0.1	86	65	0	[12]	G	G	Р	VG	Р	Р	Р	Crop Production Services

* first year tested, very limited data available

** CWHWS = Canadian Western Hard White Spring Wheat

*** semi-dwarf type

BW487 and BW961 are GP (general purpose) wheat

CDC Thrive, CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties

 $\textbf{CDC Titanium, CDC Utmost, Shaw, and Unity} are Wheat Midge Resistant varieties}$

AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

Protected by Plant Breeders' Rights

VG = very good, G = good, F = fair, P = Poor, VP = very poor

XX = insufficient data

 $\Delta~$ denotes materials not registered

FHB = Fusarium Head Blight

Average protein for Katepwa is13.6%

Overall average maturity for Katepwa is 105 days

Katepwa check variety

Note: Graph above does not include outliers (very low yield, very long maturity). Page 7 & 8 has all data.

Average maturity for Katepwa is 97 days for 2014

AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

CDC Thrive, CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties

CDC Titanium, CDC Utmost, Shaw, and Unity are Varietal Blends and thus Wheat Midge Resistant varieties

BW487 and BW961 are GP (general purpose) wheat

** CWHWS Canadian Western Hard White Spring Wheat

*** semi-dwarf type

 Δ denotes materials not registered

* first year tested, very limited data available

* first year tested, very limited data available

** CWHWS Canadian Western Hard White Spring Wheat

*** semi-dwarf type

 Δ denotes materials not registered

Average maturity for Katepwa is 105 days for 2014

Katepwa - check variety

CDC Thrive, CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties CDC Titanium, CDC Utmost, Shaw, and Unity are Varietal Blends and thus Wheat Midge Resistant varieties

AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

CANADA PRAIRIE SPRING WHEAT

CANADA WESTERN SOFT WHITE SPRING WHEAT

All current Canada General Purpose Spring varieties (CPS and CWSWS are in this class) should be treated with a systemic fungicide seed treatment to control smut. Avoid deep seeding General Purpose wheats. Note the long maturity periods required for the production of currently available CWSWS wheat varieties. Very late lines, such as *Pasteur*, should not even be attempted in the Peace River region. Seeding rates for all classes of wheat covered by the new class "General Purpose" should be increased 20 to 25% due to the larger kernel size.

CPS/CWS	SWS Wh	eat						Yield	as %	6 of AC A	Andre	w
			Dawso	n Creek			Fort St	John		B.C	. Peac	e
Variety	Туре	bu / acre	% of check	Avg. (%)	2014 Stn. Yrs.	bu / acre	% of check	2009 - Avg. (%)	2014 Stn. Yrs.	<u>2014</u> Avg. (%)	Avg. (%)	<u>3-2014</u> Stn. Yrs.
5700 PR 5702 PR AAC Chiffon AAC Crusader *	CPS-red CPS-red CWSWS CPS-red	101 108 114 97	98 103 112 93	94 94 107 93	[5] [5] [2] [1]	65 68 83 63	93 97 117 86	92 95 112 86	[6] [6] [2] [1]	96 100 115 90	93 95 110 90	[11] [11] [4] [2]
AAC Foray * AAC Innova * AAC NRG097 * AAC Penhold * AAC Proclaim	CWGP CWGP CWGP CWGP CWSWS	96 106 97 96 94	93 100 96 95 92	93 100 96 95 92	[1] [1] [1] [1] [2]	67 82 69 62 66	94 109 100 89 92	94 109 100 89 93	[1] [1] [1] [1] [2]	94 105 98 92 92 92	94 105 98 92 93	[2] [2] [2] [2] [4]
AAC Ryley AAC Tenacious * AC Andrew	CPS-red CPS CWSWS	98 86 103	94 84 100	92 84 100 70	[2] [1] [5]	 62 55 71	87 78 100	90 78 100	[2] [1] [6]	91 81 100 77	91 81 100 70	[4] [2] [11]
AC Barrie AC Foremost * CDC NRG003	CWRS CPS-red CWGP	102 107	75 99 102	78 99 94	[3] [1] [4]	55 63 66	78 88 91	79 88 89	[3] [1] [5]	94 97	79 94 92	[6] [2] [9]
Enchant Minnedosa NRG010	CPS-red CPS-red CPS-white CPS-white	91 87 93 109	87 84 88 105	89 85 88 97	[4] [2] [4] [4]	68 55 62 68	93 77 87 94	87 83 87 92	[5] [3] [5] [5]	90 81 88 100	88 84 88 95	[9] [5] [9] [9]
Superb SY087 * SY985 SY995 *	CWRS CWGP CPS-red CPS-red	90 87 88 86	90 90 86 85 83	88 86 80 83	[2] [5] [1] [2] [1]	68 60 62 60	96 85 87 82	92 85 85 82	[3] [6] [1] [3] [1]	93 93 86 86 83	90 86 83 83	[3] [11] [2] [5] [2]

Data above is composed of two trials per site. Coefficient of Variance (CV)

values in 2014 for original raw yield data is: DC = 4.61%, 3.87%; FSJ = 5.71%, 6.18%.

 Δ denotes materials not registered

Average maturity for AC Andrew is 98 days for 2014

CPS/CWSWS Wheat

Variety Descriptions

			В.С	2009 C. Peac	e Avera 9-2014	ages			A	lberta Resis	Agdes	(100/3 to:	32		
	Variety	Туре	Maturity in days +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- che	nel in % eck	Lodging	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
	5700 PR	CPS-red	0 1	75	64	1	[11]	VG	F	Р	VG	Р	Р	Р	Crop Production Services
-	5702 PR	CPS-red	-0.6	81	63	1	[11]	G	P	P	F	P	F	P	Crop Production Services
-	AAC Chiffon	CWSWS	0.9	103	64	0	[4]	G	Р	VP	VP	G	F	VP	AAFC Lacombe
-	AAC Crusader *	CPS-red	-2.2	75	63	2	[2]								AAFC Lacombe
-	AAC Foray *	CWGP	-0.2	83	64	2	[2]	G	G	Р	F	G	Р	F	AAFC Winnipeg
-	AAC Innova *	CWGP	2.4	82	62	0	[2]								AAFC Lacombe
-	AAC NRG097 *	CWGP	0.8	76	65	0	[2]	G	F	F	VG	VP	F	F	AAFC Lacombe
-	AAC Penhold *	CWGP	-2.7	67	65	2	[2]	VG	G	F	VG	G	F	G	AAFC Lacombe
-	AAC Proclaim	CWSWS	-0.5	95	64	1	[4]	F	G	G	VP	Р	F	G	FP Genetics
-	AAC Ryley	CPS-red	-0.4	85	63	2	[4]	G	G	F	VG	VP	Ρ	Р	SeCan
	AAC Tenacious *	CPS	-3.4	87	64	2	[2]								AAFC Lacombe
	AC Andrew	CWSWS	0.0	78	64	0	[11]	VG	Ρ	VP	VP	F	Ρ	F	SeCan
-	AC Barrie	CWRS	-3.1	82	64	3	[6]	G	G	G	F	VP	Ρ	F	SeCan
	AC Foremost *	CPS-red	-0.9	68	63	2	[2]	VG	F	F	VG	VP	Ρ	VP	SeCan
-	CDC NRG003	CWGP	-2.7	84	63	1	[9]	G	F	F	VG	VP	F	F	Canterra Seeds
-	Conquer	CPS-red	-0.2	91	64	2	[9]	G	Ρ	Р	VG	G	F	Р	Canterra Seeds
-	Enchant	CPS-red	0.1	93	64	2	[5]	F	G	Ρ	VG	ΧХ	Ρ	VP	FP Genetics
-	Minnedosa	CPS-white	-3.2	87	63	1	[9]	G	G	F	G	G	Ρ	Р	SeCan
-	NRG010	CPS-white	1.4	89	63	1	[9]	G	Ρ	Р	VG	VG	F	Р	Canterra Seeds
	Pasteur	CWGP	3.7	81	65	1	[5]	VG	G	Ρ	VP	G	F	F	SeCan
-	Superb	CWRS	-2.8	83	65	2	[11]	G	F	F	G	VP	VP	Р	SeCan
-	SY087 *	CWGP	-2.6	80	65	3	[2]	G	F	Ρ	G	G	F	G	Syngenta Canada Inc.
-	SY985	CPS-red	-1.2	86	65	2	[5]	G	Ρ	VG	G	XX	F	F	Crop Production Services
-	SY995 *	CPS-red	-0.2	77	63	2	[2]	G	Р	VP	G	G	Р	Р	Syngenta Canada Inc.

* first year tested, very limited data available

AC Andrew - check variety

Protected by Plant Breeders' Rights Overall average maturity for AC Andrew is 107 days.

Overall average protein for AC Andrew is 10.7 day

VG = very good, G = good, F = fair, P = Poor, VP = very poor

XX = insufficient data

 Δ denotes materials not registered

Numbers in square brackets [] is number of station years collected for protein

DURUM WHEAT

Durum is a type of wheat which is used to make pasta products (macaroni, spaghetti, etc.), and Canada has become a world leader in quality durum. Durum plant breeding within Canada is also moving toward even higher protein content and is developing a brand new category of high gluten strength durum for a specialty pasta market. However, durum requires a long growing season and high heat, two things the Peace River region has not traditionally been known for having. In the past, durum production has been concentrated in the southern parts of the Canadian prairies.

A few producers in northwestern Alberta have had success growing the crop and for this reason it has been tested in the B.C. Peace since 2009. Often surprises arise in our northern long-daylight region so it was worth investigating durum. Most currently available durum varieties are referenced within literature to be approximately 10 days later in maturity than CWRS wheat. This has not proven to be the case in the B.C. Peace except in 2011, which was a very wet & late year, however it does suggest there is a potential to be late maturing, but no worse than mid-maturity GP wheat. Therefore, durum should not be grown in large acres within the B.C. Peace River region for grain production until more is understood about its agronomics. Interest among grain buyers needs to develop as well which admittedly creates a vicious circle of acceptance by buyer and producer. Caution should be taken when attempting to grow durum in the B.C. Peace region, and disclosure of this data is currently not a recommendation to grow durum in the Peace.

It appears that the B.C. Peace River region has one really big advantage in growing durum, as traditionally we do not have to be concerned about Fusarium Headblight, specifically Fusarium graminearum. This disease is a major problem in most durum growing regions. 2013 proved to produce some evidence of fusarium species in some wheat due to an exceptionally wet and consistently wet year. Whether this was a fluke or the new norm is not known, but would be a concern for the growing of durum wheat anywhere. For interest sake then, durum data collected within the B.C. Peace region has been disclosed as it appears that durum could hold some economic promise to our region in years to come - assuming a local market develops. The test years 2009 and 2010 unfortunately were years of severe drought and poor yield potentials, but compared to other wheat yields over the same period of time at the same testing locations, durum was respectable in yield by comparison and even seemed to survive the drought better than other wheat types. 2011 and 2013 were very wet & late maturing years but did not change the crop's promising outlook as a new viable crop-type for our region. Noting however that if a normal killing frost would have occurred in either year it would have been bad news for anything later than a CWRS wheat.

Durum Whea	t							Yield	l as %	6 of	Stron	gfield		
			Dawsor	n Creek			Fort St	John			В.(C. Peac	е	
		201	4 Yield	2009 -	2014	201	4 Yield	2009 -	2014	-	2014	2009 -	2014	
Variety	Туре	bu /	% of	Avg.	Stn.	bu /	% of	Avg.	Stn.		Avg.	Avg.	Stn.	
		acre	check	(%)	Yrs.	acre	check	(%)	Yrs.		(%)	(%)	Yrs.	
AAC Cabri *	CWAD	72	101	101	[1]	33	102	102	[1]		102	102	[2]	
AAC Current *	CWAD	69	96	96	[1]	36	114	114	[1]		105	105	[2]	
AAC Marchwell	CWAD	72	98	96	[2]	35	108	107	[2]		103	101	[4]	
AAC Raymore	CWAD	64	88	87	[2]	30	96	94	[2]		92	91	[4]	
AAC Spitfire *	CWAD	73	97	97	[1]	41	130	130	[1]		114	114	[2]	
CDC Carbide *	CWAD	75	104	103	[1]	36	117	117	[1]		111	110	[2]	
CDC Desire	CWAD	68	94	97	[2]	37	118	111	[2]		106	104	[4]	
CDC Fortitude	CWAD	68	94	98	[2]	38	121	115	[2]		108	106	[4]	
CDC Vivid	CWAD	69	94	99	[3]	36	114	103	[3]		104	101	[6]	
DT575 * 🛆	CWAD	76	105	104	[2]	36	113	113	[2]		109	109	[4]	
Enterprise	CWAD	80	112	108	[6]	34	110	104	[6]		111	106	[12]	
Strongfield	CWAD	73	100	100	[6]	31	100	100	[6]		100	100	[12]	

Strongfield - check variety

Durum Wheat

AAC Marchwell is a wheat midge tolerant variety

A denotes materials not registered

* first year tested, very limited data avaliable

AAC Raymore and CDC Fortitude are stem sawfly (solid stem) resistance varieties Data above is composed of two trials per site. Coefficient of Variance (CV)

values in 2014 for original raw yield were: DC = 3.45%, 8.74%; FSJ = 4.75%, 8.92%.

Regional Variety Performance 2014

Average maturity for Strongfield is 100 days for 2014

Durum Wheat

Variety Descriptions

		B.C	. Peac	e Avera	ages			All	oerta A	gdex	100/3	2	
Variety	Туре	Maturity in days +/- check	2009 Height cm	- 2014 Bushel Weight Ibs/bu	Kernel Protein % +/- check	Lodging	Sprouting	Loose Smut	Resi: Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
AAC Cabri * AAC Current * AAC Marchwell AAC Raymore	CWAD CWAD CWAD CWAD	0.9 0.5 1.4 0.8	83 80 89 88	63 64 63 63	0 [2] 0 [2] 0 [4] 1 [4]	FF	F F F	P G P	G VG G	G VG G	F P F	P P VP	AAFC Lacombe Alliance Seed Corp. SeCan SeCan
AAC Spitfire * CDC Carbide * CDC Desire	CWAD CWAD CWAD	0.6 -0.7 0.2	78 79 87	62 64 64	0 [2] 0 [2] 0 [4]	F	G	Р	VG	G	F	VP	SeCan CPS Canada Inc. Syngenta
 CDC Fortitude CDC Vivid DT575 * ∆ Enterprise Strongfield 	CWAD CWAD CWAD CWAD CWAD	1.2 1.1 0.9 -0.5 0.0	88 84 84 81 78	64 63 63 64 64	0 [4] 0 [6] 0 [2] -1 [12] 0 [12]	G G G F	F F F	P F P VP	VG VG G F	G G VG G	P F F P	P VP P VP	CPS Canada Inc. Crop Production Serv. U of S Canterra Seeds SeCan

VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

* first year tested, very limited data available

 $\Delta\,$ denotes materials not registered

Numbers in square brackets [] is number of station years collected for protein

Protected by Plant Breeders' Rights

Strongfield - check variety

AAC Marchwell is a wheat midge tolerant variety

AAC Raymore, CDC Fortitude are stem sawfly (solid stem) resistance varieties

Overall average maturity for **Strongfield** is **107** days Overall average protein for **Strongfield** is **14.5** %

Six Row Barley

Yield as % of AC Metcalfe

		_	Dawson	Creek			Fort St.	John		В.0	C. Peac	е
		2014	Yield	2009-2	2014	2014	1 Yield	2009-2	2014	2014	2009-	2014
Variety	Туре	bus / acre	% of check	Avg. (%)	Stn. Yrs.	bus / acre	% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Lacombe	Feed	96	103	107	[6]	72	102	107	[6]	103	107	[12]
AC Metcalfe	Malt	88	100	100	[12]	103	100	100	[12]	100	100	[24]
Amisk **	Feed	92	94	102	[2]	73	101	107	[2]	98	105	[4]
Breton ***	Feed	96	105	108	[3]	78	111	109	[3]	108	108	[6]
BT596 * ∆	Feed	96	104	104	[1]	75	112	112	[1]	108	108	[2]
CDC Anderson	Malt	83	92	100	[4]	66	95	103	[4]	94	101	[8]
CDC Mayfair	Malt	80	86	98	[6]	64	91	99	[6]	89	98	[12]
Celebration	Malt	83	91	100	[5]	65	91	98	[5]	91	99	[10]
Chigwell	Feed	87	98	103	[4]	67	98	105	[4]	98	104	[8]
Muskwa *** Vivar **	Feed Feed	87 93	96 102	110 110	[4] [6]	67 65	99 94	107 109	[4] [6]	98 98	108 110	[8] [12]

Two Row Ba	arley						Yield	as % (of AC	Metca	lfe	
			Dawson	Creek			Fort St.	John		В.С	C. Peace	е
		2014	Yield	2009-	2014	2014	4 Yield	2009-	2014	2014	2009-2	2014
Variety	Туре	bus /	% of	Avg.	Stn.	bus /	% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre	check	(%)	Yrs.	acre	check	(%)	Yrs.	(%)	(%)	Yrs.
AAC Synergy	Malt	105	115	103	[3]	90	105	101	[3]	110	102	[6]
ABI Voyager ∆	Malt	103	114	102	[2]	87	101	95	[2]	108	99	[4]
AC Metcalfe	Malt	89	100	100	[12]	85	100	100	[12]	100	100	[24]
Bentley	Malt	95	105	102	[6]	91	106	101	[6]	106	101	[12]
Brahma	Feed	105	119	108	[2]	85	99	99	[2]	109	104	[4]
Canmore	Feed	99	113	103	[2]	96	113	107	[2]	113	105	[4]
CDC Kindersley	Malt	91	104	99	[4]	91	109	101	[4]	107	100	[8]
Cerveza	Malt	103	114	107	[5]	97	113	105	[5]	114	106	[10]
Champion	Feed	108	120	124	[6]	94	110	107	[6]	115	115	[12]
HB623 * ¶	Food	73	94	94	[1]	63	87	87	[1]	90	90	[2]
Major	Malt	105	117	101	[6]	92	107	101	[6]	112	101	[12]
Merit 57	Malt	110	123	116	[5]	100	117	109	[5]	120	113	[10]
TR07921 * ∆	Malt	100	110	110	[1]	89	103	103	[1]	106	106	[2]
TR10214	Malt	111	123	108	[2]	93	109	101	[2]	116	105	[4]
TR11127 * ∆	Malt	87	95	95	[1]	77	93	93	[1]	94	94	[2]
TR12733 * ∆	Feed	105	115	115	[1]	92	107	106	[1]	111	111	[2]
TR12735 * Δ	Feed	113	130	129	[1]	95	113	113	[1]	122	121	[2]
Xena	Feed	104	115	109	[6]	83	97	100	[6]	106	104	[12]

Data above is composed of two trials per site. Coefficient of Variance (CV) values in 2014 for original raw yield data is: 2-row barley DC = 4.8%, 3.9%; FSJ = 3.99%, 6.02%; 6-row barley DC = 6.45%, 3.03%; FSJ = 5.53%, 6.27%.

AC Metcalfe - check variety for 2 row AC Metcalfe - check variety for 6 row * first year tested, very limited data available

** semi-dwarf type

*** smooth-awned type

 \P denotes hulless seed types (bu/ac adjusted for hulless) Δ denotes materials not registered, very limited data available

	Feed Barle	ey											Variety Descriptions
			В.	C. Peac	e Avera	ges	A	lberta R	Agdex	100/	32 in	fo	
			Days to Maturity	Height	Bushel Weight	Kernel Protein %	dging	ose nut	Int se	ot Rot	ald	в	
	Variety	Туре	+/- check	cm	lbs/bu	+/- check	Loc	Sr	Fal Sm	Ro	Sc	ΗĽ	Distributor
			I	Eligible f	or Genei	ral Purpose Gr	ades	Only					
-	AC Lacombe	6 row	-0.4	84	51	-1 [12]	G	Р	G	Р	Ρ	VP	SeCan
-	Brahma	2 row	-0.1	80	55	0 [4]	G	Р	VG	G	VP	F	Crop Production Services
	Breton ***	6 row	-1.2	85	51	-1 [6]	F	Ρ	G	F	F	VP	Canterra Seeds
	BT596 * 🛆	6 row	-1.2	68	54	0 [2]							AAFRD:Lacombe
	Canmore	2 row	0.5	85	56	-1 [4]							Canterra Seeds
	Champion	2 row	2.4	79	56	-1 [12]	G	VP	VG	XX	VP	F	Crop Production Services
	Chigwell	6 row	1.4	80	53	0 [8]							SeCan
	Muskwa ***	6 row	0.1	81	53	-1 [8]	G	Р	VG	Ρ	G	VP	SeedNet
	TR12733 *∆	2 row	1.0	74	55	-1 [2]							Crop Production Sevices
	TR12735 *∆	2 row	1.0	66	57	-1 [2]							Crop Production Sevices
	Xena	2 row	0.1	78	55	0 [12]	G	Ρ	Р	G	VP	G	Crop Production Sevices
					S	emi-dwarf va	rieties	6					
	Amisk **	6 row	0.4	75	50	0 [4]							SeCan
	Vivar **	6 row	-0.3	75	53	-1 [12]	VG	F	VG	G	F	VP	SeCan
					Food a	nd general pu	urpose	e varie	ety,hul	less			
-	HB623 * ¶	2 row	-0.3	84	65	0 [2]	VG	VP	F	F	F	F	AAFRD:Lacombe

Malt Barl	ey											Variety Descriptions
		В	.C. Peac	e Avera	jes	A	Iberta	Agdex	100/	'32 inf	io	
			2009	}-2014			Res	istance	to			
		Days to		Bushel	Kernel	-			Ħ			
		Maturity	Height	Weight	Protein %	Iginç	ut se	nt se	ot R	pla	m	
Variety	Туре	+/- check	cm	lbs/bu	+/- check	Loc	Sm Sm	Fal: Sm	Roc	Sca	Ï	Distributor
AAC Synergy	2 row	0.5	79	54	-1 [6]	F	VP	F	F	VP	Ρ	Syngenta
■ ABI Voyager ∆	2 row	0.7	83	55	0 [4]							Busch Agric. Resources Inc.
AC Metcalfe	2 row	0	79	55	0 [24]	F	VG	F	F	VP	F	SeCan
Bentley	2 row	-0.3	81	54	0 [12]	G	P	G	G	VP	Ρ	Canterra Seeds
CDC Anderson	6 row	-0.5	89	53	0 [8]	G	G	VG	F	Ρ	F	SeCan
CDC Kindersley	2 row	-2.5	86	56	0 [8]	G	VP	VG	F	VP	F	SeCan
CDC Mayfair	6 row	-3.0	79	52	0 [12]	G	S	G	F	VP	Ρ	Canterra Seeds
Celebration	6 row	-4.2	85	53	1 [10]	VG	VG	VG	Ρ	VP	Ρ	Canterra Seeds
Cerveza	2 row	-0.9	79	54	0 [10]	F	VG	VG	F	VP	F	Mastin Seeds
Major	2 row	-1.4	76	54	0 [12]	G	VG	G	F	Ρ	F	Crop Production Services
Merit 57	2 row	2.4	82	55	-1 [10]	F	Ρ	VP	F	Ρ	G	Canterra Seeds
TR07921 *∆	2 row	0.1	84	55	-1 [2]							U of S
TR10214	2 row	0.9	86	54	0 [4]							U of S
TR11127 * ∆	2 row	-0.2	76	56	-1 [2]							SeCan

VG= very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

Overall average maturity for AC Metcalfe is 94 days

Overall average protein for AC Metcalfe is 13%

Numbers in square brackets [] is number of station years collected for protein

* first year tested, very limited data available ** semi-dwarf type *** smooth-awned type

 \P denotes hulless seed types

Protected by Plant Breeders' Rights

 $\Delta~$ denotes materials not registered

AC Metcalfe - check variety

Barley

Average maturity for AC Metcalfe is 91 days for 2014

* first year tested materials

** semi-dwarf type

*** smooth-awned type

 Δ denotes materials not registered ¶ denotes hulless seed types

Overall average maturity for AC Metcalfe is 94 days (both graphs)

Oat is usually a feed crop but some varieties are also suitable for higher value feed and food markets. The milling industry prefers higher protein varieties with plump kernels and lower hull content, while the horse industry prefers white hulled varieties. Hulless oat varieties have excellent feed and food value but need to be stored drier than normal varieties (<12% moisture) and do not flow as well in the bin due to their pubescence (hairs) which seem to "lock together". The exception to this "hairy-hulless" issue are "low pubescence" varieties like *AC Gehl*, tested in 2011-2013, which are lines aimed at finding a replacement for rice actually, hence its marketing slogan "Prairie Rice"[®]. A potential contracted market in the Peace River area is a real possibility if agronomics work out for other "hairless hulless" oat lines but in both 2012 and 2013 wet soils expressed poor vigor of the germinating seed due to our cool clay soils. No "hairless hulless" oat lines were tested in 2014. More vigorous "hairless hulless" lines are being sought that can handle our soils and spring conditions. Wet and cool soils during emergence are more the norm in the Peace River region which "hairless hulless" lines do not like as a general observation. Yield values for all hulless oat varieties are expressed after hull removal, which reduces the seed weight by 20-25% compared to the normal hulled oat varieties. Keep this ratio in mind while comparing hulless to hulled when such data is present.

Oat							Yield	as % o	of CD	C Danc	er	
		1	Dawson Cr	eek			Fort St. Jo	ohn		B.C	C. Peac	е
	=	2014 Y	′ield	2009-2	2014	2014	Yield	2009-3	2014	2014	2009-2	2014
Variety	Colour	bu /	% of	Avg.	Stn.	bu /	% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre	check	(%)	Yrs.	acre	check	(%)	Yrs.	(%)	(%)	Yrs.
AAC Justice	Yellow	113	103	99	[2]	95	103	110	[2]	103	104	[4]
AC Mustang	White	121	113	108	[6]	102	116	114	[6]	114	111	[12]
Bia *	White	121	105	105	[1]	104	113	113	[1]	109	109	[2]
Cascade	Yellow	117	105	99	[2]	93	102	97	[2]	103	98	[4]
CDC Big Brown	Brown	121	110	99	[5]	97	111	107	[5]	110	103	[10]
CDC Dancer	White	110	100	100	[6]	89	100	100	[6]	100	100	[12]
CDC Haymaker	Yellow	129	108	97	[2]	109	106	109	[2]	107	103	[4]
CDC Ruffian	White	128	115	97	[3]	108	119	104	[3]	117	101	[6]
CDC Seabiscuit	Yellow	130	112	97	[4]	109	110	107	[4]	111	102	[8]
CS Camden *	White	123	108	108	[1]	104	110	110	[1]	109	109	[2]
Lu	Yellow	107	96	95	[6]	93	101	103	[6]	99	99	[12]
Nice *	White	119	105	105	[1]	100	108	108	[1]	106	106	[2]
OT3066 * Δ	White	119	104	104	[1]	101	105	105	[1]	104	104	[2]
Souris	Yellow	119	106	96	[3]	89	98	102	[3]	102	99	[6]
Triactor	White	141	120	109	[6]	119	122	114	[6]	121	111	[12]

Data above is composed of two trials per site. Coefficient of Variance (CV) values in 2014 for original raw yield data is: DC = 5.79%, 5.19%; FSJ = 4.68%, 4.61%.

* first year tested, very limited data available Δ denotes materials not registered

CDC Dancer - check variety

Health Benefits Of Oat

Oat is mainly used for livestock feed especially horses and cows and only a small percentage of oat has been traditionally used for human consumption. However, oat are a great source of fibre which consists of more than half as soluble fibres. Oat is high in protein and mineral contents included calcium, iron, magnesium, zinc, copper, manganese, thiamin, folacin and vitamin E. They are higher in these components than any other whole grain, such as wheat, barley, corn or rice. Rich in Vitamin B1 they can help maintain carbohydrate metabolism. Many scientific researchers have proven that eating oatmeal, oat bran and whole oat products improves both blood pressure and cholesterol levels and furthermore, it also reduces the risk of heart disease, cancer and diabetes. Thus, oat is a significant contributor to the good health of not only livestock but also to good human health as well.

	Oat							Variety Descriptions
			BC Peac	e Avera	ges	Albe	rta Agde	x 100/32 info
			2009	- 2014		Tole	rance to:	_
			Maturity		Bushel	p		
			as days	Height	Weight	dgir	nuts	
	Variety	Туре	+/- check	cm	lbs/bu	Loc	Sm	Distributor
	AAC Justice	Milling	1.9	100	43	G	VG	FP Genetics
-	AC Mustang	Feed/Forage	3.5	97	43	G	F	Mastin Seeds
-	Bia*	Feed	0.2	78	39			SW Seed Ltd.
	Cascade	Feed	1.3	80	40			SeCan
-	CDC Big Brown	Milling	3.0	91	43	G	VG	SeCan
-	CDC Dancer	Milling	0.0	91	42	G	VG	FP Genetics
-	CDC Haymaker	Forage	2.3	106	39	F	G	SeCan Association
-	CDC Ruffian	Milling	5.1	85	41	G	VG	FP Genetics
-	CDC Seabiscuit	Milling	6.0	95	41	G	G	Canterra Seeds
-	CS Camden*	Milling	-0.6	72	39			Canterra Seeds
	Lu	Feed	-1.8	87	41	G	VG	SeCan
-	Nice*	Milling	-0.7	82	40			La Coop fédérée
	OT3066 * Δ	Milling	-1.0	81	39			U of S
-	Souris	Milling	1.7	83	41	VG	VG	Seed Depot
	Triactor	Milling	3.1	87	39	G	VG	Canterra Seeds

CDC Dancer - check variety

Protected by Plant Breeders' Rights

VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

* first year tested, very limited data available

 Δ denotes materials not registered

Average maturity for CDC Dancer is 86 days in 2014

Overall average maturity for CDC Dancer is 94 days in 2014

Oat for Feed

Oat is often sown to provide fodder in the form of silage or greenfeed. Oat will yield more silage or greenfeed per unit area than any other cereal crop. If managed properly, it can provide 3-4.5 tons of dry matter per acre, or more, of high quality feed containing up to 10 percent protein¹. Many years of comparing yields of oat with barley have shown oat to be superior in the Black and Grey Wooded soil zones¹. Although the percent protein level in barley is higher than in oat, the total amount of protein produced on a given area is higher with oat than with barley¹. Oat has about 22-26 percent hull whereas barley averages about 12-14 per cent hull on a weight basis¹. When choosing a variety, the seed yield as well as the forage yield should be considered, thereby keeping one's options open to harvest as forage or grain¹. We do not currently evaluate oat varieties for forage yield in these tests.

Forage Oat

It is believed by some producers that one variety might be better than another because it appears "leafier"; however, tests on a number of varieties have shown very little variation in leafiness². Having said that however, such work has not likely included the newer lines of forage oat that are entering the market place now. These new "forage only" lines, such as *CDC Baler* and *Murphy*, have usually been much larger plants in our tests than their traditional counterparts developed for seed quality. This should translate to more biomass being made available for forage production. Note however, that traditionally our oat tests do not lodge and so it is unclear as to whether larger plants are going to be a concern for early lodging in a large-scale forage production practice in our area³.

Other Comments

On heavier soils and in the more moist areas, lodging resistance should be considered, but again, traditionally lodging has not been a concern in our B.C. Peace oat trials³. The variation in straw feed quality between oat varieties is insignificant and should not be used as a variety selection criterion³. The average feed values are: protein 4%, fibre 49%, calcium 0.27%, and phosphorus 0.08%⁴.

Source^{1,2,4}: Alberta Agriculture, Food, and Rural Development website <u>www.agric.gov.ab.ca</u> Source³: Alberta Agdex 100/32

SPRING TRITICALE

Triticale is a genetic cross (not a hybrid) developed by crossing wheat (*Triticum turgidum* or *Triticum aestivum*) with rye (*Secale cereal*). Most varieties of spring triticale currently available are approximately 10 days or more later maturing than CWRS wheat, and as such they should not be grown in the B.C. Peace River region for grain production. However, a few varieties are proving to be earlier than traditional spring triticale varieties, and perhaps as breeding continues earlier lines may come along that can be grown here for grain with a consistent and early enough maturity. Their high grain yields are "attention grabbers", so it has been worth watching their development. Triticale seems to hold a lot of potential for ethanol production in the Peace River region if breeding efforts could produce earlier maturing lines. Drought tolerance is the primary advantage that spring triticales have over other spring cereal crops. Spring triticales are also a valuable alternative or compliment to barley and oat as forage feed. Current triticale lines do tend to have low resistance to Ergot, likely due to late maturity, but must be overcome if triticale is to be used for feed. This may become less of a concern as earlier lines are bred. Triticale's potential use as a "high volume ethanol feedstock" to our region, thus offering a new cropping choice, is the reason data is included in this report.

Spring Triticale Yield as % of AC Ultima											
		Dawson Creek				Fort St. Jo	ohn	B.C. Peace			
	2013	2013 Yield		2008-2013		2013 Yield		2013	2008-2013		
Variety	bu /	% of	Avg.	Stn.	bu /	% of	Avg. Stn.	Avg.	Avg.	Stn.	
	acre	check	(%)	Yrs.	acre	check	(%) Yrs.	(%)	(%)	Yrs.	
AC Ultima	154	c 100	100	[6]	164 c	100	100 [6]	100	100	[12]	
Brevis	172	a 112	110	[3]	181 a	110	108 [3]	111	109	[6]	
Bumper	159	b 103	105	[5]	173 b	106	104 [5]	104	105	[10]	
Sunray	152	c 98	102	[4]	161 c	98	106 [4]	98	104	[8]	
Taza	153	c 99	103	[4]	162 c	99	100 [4]	99	102	[8]	
LS	SD (P=.05) = 4.83	-			6.40						
CV	value (%) = 1.99				2.47						

Means followed by the same letter do not significantly differ (P=.05, LSD)

AC Ultima - check variety

■ Protected by Plant Breeders' Rights VG= very good, G = good, F = fair, P = poor, VP = very poor, XX = insufficient data

Spring Triticale							Variety Descriptions							
						Alberta Agdex 100/32								
	BC Peace Averages 2008-2013							Re	sistan	-				
	Variety	Maturity as days +/- check	Height (cm)	Bushel Weight (Ibs/bus)	TKW (g / 1000)	Lodging	Shatter	Sprouting	Stripe Rust	Common Bunt FHB	Ergot	Distributor		
	AC Ultima	0.0	92	58	44	G	G	F	G	VG F	Р	FP Genetics		
	Brevis	4.6	99	61	45	G	G	F	G	VG P	Р	Wagon Wheel Seed Corp.		
	Bumper	2.7	88	60	45	VG	G	F	G	VG P	XX	SeCan		
	Sunray	2.4	95	58	44	VG	G	F	G	VG P	G	SeedNet		
	Taza	2.4	104	58	46	G	G	F	G	VG VP	F	Solick Seeds		

Overall average maturity for AC Ultima is 107 days

Average maturity for AC Ultima is 120 days for 2013