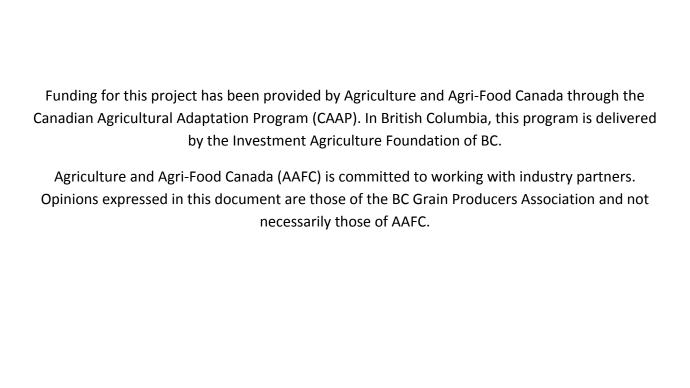


2013 FIELD CROP VARIETY PERFORMANCE


Funding provided by ...

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

BC Grain Producers Association 2013 Field Crop Variety Performance BC Peace River Region

Table of Contents

Introduction & Acknowledgements	1
Reference & Terminology	2
Growing Conditions_	
Interpreting Data	
Fertilizer Rates	5
Herbicide Applications	6
Planting & Harvest Data	6
CWRS Wheat	7
CPS/CWSWS Wheat	11
Durum Wheat	13
Barley	15
Oat	19
Triticale	22
Canola Maturity Rating Chart	23
Pests of Peace River Region Canola	24
Argentine Canola	25
Field Pea	31
Flax	35
Summary of Trials	36
Weather Information_	
Seed Distributors	40

Front cover photo

Cereal plots at the Dawson Creek (South Peace) research station, taken around mid-July 2013. Wheat research plots can be seen in the foreground but some triticale (light bluish-green at back left) and oat research work (light green back right) can be seen as well. Well over 8,000 plots were grown at both research stations in 2013 involving cereals, canola, flax, pulses, and new crops like various dry-bean types, camelina and soybean.

Front cover photo credit: Clair Langlois Publishing Date – Jan 14th, 2013

<u>2013 – B.C. Grain Producers Association</u> Board of Directors

Robert Vander Linden - President Rick Kantz - Vice President

North Peace Representatives

Robert Vander Linden – President Rick Kantz – Vice President Martin Moore – Research Committee Chair Fred Lehmann – Director

South Peace Representatives

Walter Fritsche - 2nd Vice President Irmgard Critcher – Treasurer Barry Follensbee – Director Garnet Berge – Director

<u>2013 – B.C. Grain Producers Association</u> <u>Research Committee</u>

Martin Moore – Research Committee Chair
Kerry Clark / Julie Robinson – B.C. Ministry of Agriculture Rep
Barry Follensbee
Edward Hadland
Barry Critcher
Garnet Berge

BC Grain Producers Association 2013 Field Crop Variety Performance BC Peace River Region

Introduction and Acknowledgements:

Funding for this report has been provided by AGRICULTURE AND AGRI-FOOD CANADA through the CANADIAN AGRICULTURAL ADAPTATION PROGRAM (CAAP). In British Columbia, this program is delivered by the INVESTMENT AGRICULTURE FOUNDATION OF BC (IAF). The YUKON AGRICULTURAL ASSOCIATION is also providing support through CAAP and matching funds are provided by the BC PEACE RIVER GRAIN INDUSTRY DEVELOPMENT COUNCIL (BCPRGIDC) and BC GRAIN PRODUCERS ASSOCIATION (BCGPA).

LOUIS DREYFUS (Dawson Creek office) should be recognized for their contribution via kernel protein analysis, **HADLAND SEED FARM LTD.** and **HILL FARMS LTD.** for bulk certified seed contributions, as well as several other anonymous local producers who similarly offered contributions of their own certified cereal seed. We thank all these individuals/organizations plus head-offices of various seed development/distribution companies for their "in-kind" support towards making our field-testing and the production of this book possible. Various other private organizations make financial contributions for field days, etc. throughout the year which further help support efforts of the research department. Further thanks is extended to the site cooperators who continue to generously give their support to the program via use of the land, *Vic Blanchette* for the Fort St. John site, and *School District #59* for the use of the *Hudson School Farm* near Dawson Creek, B.C. Yet a further word of thanks goes out to *Dennis Meier* of Dawson Creek who continuously and generously offers us space on his farm for all our field equipment.

We should also thank our field and lab team who once again helped to make this year yet another success. They are full-time technicians *Satoru Nosho*, *Brandi Smith*, and *Cindy Locken* who all worked very hard and well together. Further thanks to *Colleen Anderson* for her help with weather data extrapolation and review, and to all our part-time workers who were invaluable.

This document reports all tested materials grown during the 2013 growing season from performance trials placed at both the Dawson Creek and Fort St. John research farms. Materials not included in 2013 but which were previously tested, may now be viewed via earlier publications and are available for viewing or downloading at www.bcgrain.com.

Cautionary Notes:

Multiple-year testing for any one variety is our goal, but often new materials have only been tested for one year, the current year usually. This can sometimes result in an unfair representation of the new single-year materials against statistically stronger multiple-year materials even though this report cautions readers about this possible effect. To try to resolve this issue, as of 2007 we now display the results in two graphs for each crop type, one with only the current year's results, and one with multiple-year results. In the multiple-year graphs, new one-year data is left out. Where **one-year results are shown**, be it in current-year graphs or in charts, **readers must still interpret and use such one-year data with considerable caution.** This is due to the fact that a variety may change position regarding both yield and maturity as additional results are obtained – the simple effect of compiling data from variable weather patterns over time. The more station years (defined as one test site at one location in one year) that can be used to produce an average, the more stable and reliable a result will be. Hence the association's steadfast efforts to procure multi-year data. By providing readers now with a separate "current year graph" many of the risks with looking at one-year data are still there but the chances of misrepresenting a new entry against its older neighbors is greatly reduced.

This book is produced without bias and is reported to the best of our ability from our own site data collection (except where noted as in any additional canola data). It should only be used as a guide, and where labels or agreements are available or supplied with your product, be it seed or other product, always follow label directions and or agreements.

For More Information Contact:

Martin Moore - Research Committee Chair B.C. Grain Producers Association P.O. Box 6004, Fort St. John, B.C. V1J 4H6 Tel: (250) 787-2588

Clair F. Langlois - Research Manager B.C. Grain Producers Association 401 - 114th Avenue, Dawson Creek, B.C. V1G 2Z7 Tel: (250) 782-2557 FAX: (250) 784-2299

Julie Robinson – Regional Agrologist BC Ministry of Agriculture Fort St. John, B.C.

Tel: (250) 787-3241 FAX: (250) 787-3299

BC Grain Producers Association - Reference & Terminology -

Station Years

The number of station years that the variety has been tested can be seen in the yield tables inside the square brackets []. A station year is one test site at one location in one year. For example, a canola trial conducted at two locations over three years would have six station years, or [6]. We advise using caution if the data is based on *less than three station years in total*, or less than two years at both locations. This, of course, is a concern for canola where often a variety does not even stay in the seed market for more than two years.

Interpreting Yield Results

Crops in this book are managed using the same level of inputs as field sized recommendations would suggest. Small-plot research plots offer better consistency and can be better controlled, whereas wet areas and variable soil fertility affect field-scale crop production. However, small plots are subject to edge effect. "Edge effect" is caused by the spaces around the individual plots allowing extra sunlight to penetrate, boosting yields on these exposed outer plants, as compared to the average plant in a field scale situation that would be shadowed by its neighbors. The important concept here is that these effects are equal for all small plots in a given trial, and we can therefore compare varieties in each trial, and look at resulting vields relative to one another. Yields here are thus the result of small plot production and the same level of production is unlikely to be achieved on a large-scale basis. Unfortunately statistics, which are vital, cannot be used on "percent of check variety" data. Thus, we elected to show bushels per acre for the current year for the sole purpose of displaying statistical results for the current year. Treat all yields (percent of check and bushels per acre) as relative results. In all agronomic information the check variety name has been bolded to identify it.

Plant Breeders Rights

The Plant Breeders' Rights (PBR) gives plant breeders "copyright" protection of a variety for up to 18 years. Once a variety has been granted PBR, the breeder has control over the multiplication and sale of the seed. The breeder can take legal action for damages if someone infringes on their rights. Farmers may save some seed for seeding the next year on their own farm, but the sale of the crop as seed for planting purposes to others is not allowed. Many new transgenic herbicide-tolerant varieties have additional restrictions through 'technical use agreements', so be aware of these also, as they often replace PBR status and can have strong consequences if ignored. Varieties protected by PBR can be identified by their PBR logo on a seed bag, seed tag or advertising material. This book tries to identify such PBR lines within "Variety Description" tables with a solid square box. However, ultimately it is the responsibility of the grower to know which line is PBR.

Certified Seed

The cost of *certified seed* is a small additional expense in relation to total crop production input costs, especially when changing to a different variety. Certified seed assures genetic purity, high germination rates and low percentage of foreign seed when compared to common seed. Certified seed can be purchased in bulk through authorized seed dealer networks (see "Seed Distributors" at the back of this report).

Seed Treatment

Choosing disease-resistant varieties and using certified seed is good, but treated seed goes a long way in the fight against plant diseases as well. The cost of a fungicide or a combined fungicide/insecticide seed treatment can be a small price to pay for the amount of protection and peace of mind they provide. The right seed treatment choice is important as some perform better than others for certain crop types. Treated seed must not contaminate grain delivered to an elevator or be used for feed.

- ◆ Cereal seed should be treated to control *true loose smut* and early season *seedling* diseases.
- Seed of rye, winter wheat and flax should be treated to control seedling blight. Winter wheat and rye also require protection against smut.
- ◆ Canola seed should be treated to control seed borne blackleg, damping off and early flea beetle attack.

Ergot

The fungal disease Ergot can attack the grain of all varieties of wheat, barley, rye, triticale and most common species of grass. Oat varieties are rarely attacked. Grain having 0.1% ergot is considered poisonous to livestock and should not be used as feed. The black rice-like "seed mummies" can be spotted prior to harvest in heads during a field inspection.

Seed Inoculation

Peas can make much of their nitrogen (N) requirement from the air through a partnership with soil bacteria called Rhizobium. Cool, dry or excessively wet soils provide a harsh environment for proper inoculation. Under these conditions, a low level of nodulation formation will be the result. Survival of residual rhizobia organisms in our cool Peace Region soils is not consistently reliable; making use of inoculant with seed is a good form of insurance. The pea seed must be inoculated immediately before or during seeding with a proper strain of bacteria specific to peas. Rhizobia are living organisms so check the expiry date on the package and follow inoculant label directions carefully. Generally, it is a good idea prior to its use and even during use if possible, to try and reduce the inoculant's exposure to sunlight, open-air and warmth. Granular formulations placed with the seed have traditionally offered good results in Peace Region soils, but new inoculants are constantly entering the market place which may offer excellent inoculation as well. Note that high residual soil nitrogen levels (over 60 kg N/ha) will reduce nodulation in the field regardless of inoculation. Granular inoculant placed with the seed at planting was used on all pea-trials seen in this report.

Seeding Rates

While the following *range* of seeding rates has given consistent yields for each crop in these trials, experience has shown that the top end of the range provides even more consistent results. **Risk of impaired emergence under stressful conditions can be reduced by increasing the seeding rate.** In addition, higher seeding rates can reduce the amount of secondary tillering, **produce earlier and more uniform maturity**, and reduce the amount of green kernels at harvest.

Tests conducted by the Beaverlodge Research Station several years ago throughout the Peace Region showed that by increasing the seeding rate of wheat from 80 to 120 lbs/ac (90 to 134 kg/ha), that the time to maturity was reduced by two days. Our own BCGPA trials involving seeding rates in barley initially showed that when increasing seeding rates from 2.25 to 2.5 bushels per acre for barley, it decreased maturity from 2 to even 4 days, which is significant by harvest. However, over the full five years of the project, results became less significant. Wheat is currently being tested by the BCGPA but no conclusions have been drawn as of yet.

Suggested Rates of Seeding									
Wheat	90 - 120 lb/ac	100 - 135 kg/ha							
CPS Wheat	130 - 180 lb/ac	145 - 200 kg/ha							
Barley	75 - 100 lb/ac	85 - 110 kg/ha							
Oat	70 - 90 lb/ac	85 - 100 kg/ha							
Flax	26 - 40 lb/ac	30 - 35 kg/ha							
Rye	65 - 85 lb/ac	73 - 95 kg/ha							
Peas	150 - 300 lb/ac	165 - 330 kg/ha							
Argentine Canola	a 5 - 8 lb/ac	6 - 9 kg/ha							
Polish Canola	5.5 lb/ac	6 kg/ha							

Due to large differences in seed sizes, seeding rates can vary considerably. Therefore, one should base the seeding rate on a *target number* of *viable seeds per square foot*. Using the 1000 kernel weights, adjusting for percent germination and allowing for seed decay (3%), calculate the number of pounds of seed required per acre.

Crop Type	Seeds / sq.ft	Avr. 1000 K wt
Wheat - CWRS	24 - 25	35 - 44 g
- CPS / CWES	24 - 25	44 - 52 g
Barley - 6 Row	24 - 25	35 - 43 g
- 2 Row	24 - 25	44 - 53 g
Oat - Hulled	24 - 25	38 - 47 g
Rye	24	30 - 35 g
Peas	8	200 - 345 g

Example (using peas):

Target 8 pea plants per square foot, the variety has a 1000 K wt. of 250 grams, and you estimate that between seed decay and percent germination of the seed lot that you will have, 90% of the seeds will grow into healthy plants. Therefore...

Answer: You would plant 222 lbs. of pea seed/acre.

BC Grain Producers Association - 2013 Growing Conditions -

Heavy late snowfalls had everyone thinking we would all be planting a month behind schedule but an unusually warm period started in early May so planting was only delayed by about a week. An advanced forecast calling for heavy rains in late May had everyone pushing their planting hours and for good reason as on the evening of May 22nd when our planting was completed, forecasters were proved correct. Never heavy enough to cause flooding, but enough and often enough that planting after May 22nd would prove difficult; even timely post-emergent spraying in June was a struggle due to saturated soils. Filling in "non-research" areas with bulk rotational crops on both farms was challenging in 2013. The frequent rains continued right on through the summer and into the harvest period. Field operations were more or less scheduled around the rains rather than time of year, and much of the research assessments in the field were accomplished via umbrellas, mud-boots, and water-resistant paper!

The frequent well-spaced rains meant the crops just did not want to stop growing nor stop producing flowers and thus seed (canola averaged significantly over 30 days of continuous blooming). Consequently yields in all crops were excellent to exceptional, perhaps record breaking in the cereals. The downside was a delayed harvest for all crops and an increase in disease pressures from ascochyta and mycosphaerella blights in peas to schelortinia in canola, increase of ergot in triticale and wheat, and even some other diseases lowering seed quality in wheat by harvest. Rains were so frequent that multiple applications of fungicides were likely the only disease protection regimes that would have large economic returns in a year of such constant dampness.

A delay in a killing frost to nearer the end of September and lack of early snowfall (a bonus for sure) allowed all harvest to wrap up by late October but only with the help of desiccants. The second bonus this year was despite the disease pressures, most crops had good quality, lodging was much lower than anticipated, and statistical values in all trials were some of the best on record. LSD values (see page 4 for explanation thereof) offered large spreads between the means of lines, so all in all it was a fantastic year for research results.

Interpreting Data

The yield for each variety is reported on a regional basis for the Dawson Creek and Fort St. John areas and as an average for the entire B.C. Peace. Also, the number of years each variety has been tested is given for each of the two regions. In the following examples, the number of years is indicated in [] right after the yield. "Station years" are the total number of times a variety has been tested in these trials.

Two Ro	w Barle	y		Yield as % of AC Metcalfe						
Variety	Type	Daw: 2013 Yield	son Creek 2008-2013 Avg. Stn.Yrs	2013	rt St.John 2008-2013 Avg. Stn.Yrs.	B.C. Peace 2013 2008-2013 Yield Avg. Stn.Yrs.				
XENA 2-row	feed	115	113 [3]	125	105 [5]	120 109 [8]				
note: the above exam	nple is a dram	atization		of years the var ted at each stati		of times in total the variety d in the BC Peace .				

Statistical Values Entries into the Regional trials are replicated (or repeated) four times (three times minimum) at both locations. Replication is used to derive an overall average per entry per trial, and allow for statistical analysis.

Coefficient of Variance (CV value), given as a percentage, tells us how statistically sound or reliable a given data set is. Generally, any value less than or equal to 15% is considered to be acceptable and indicates "sound" data. This means if you were to repeat the trial under similar conditions, you would get similar results, or at least we are 95% confident that we would. We tend to be a little more lenient on this 15% for such things as disease or insect data, as these are normally highly variable traits due to the nature of the beast, but we do not like to see yield data from a single trial with a high CV value. Anything less than 10% is considered excellent.

Least Significant Difference test (LSD value), are those little letters behind the data means (or averages). Basically, if two or more data means have the same letter behind their number, they are NOT significantly different from one another according to statistics. Therefore, means or averages with the same letter should not be viewed as one being "superior" or "inferior" from the other or others of the same letter. LSD takes vari-

Example:	Dawson Creek						
	2013	2008-2013					
Variety	Yield	Avg. Stn.Yrs.					
Super X	105 ab	102 [3]					
Superdooper Y	107 a	105 [3]					
So-So 101	100 b	98 [2]					
Old Goody	95 c	97 [6]					

ability into account, and compares "apples" to "apples".

In this example, some people might think variety
"Superdooper Y" is superior to variety "Super X"
and "So-So 101". This is not true according, to
statistics, "Superdooper Y" is superior to variety
"So-So 101", but is equivalent to "Super X" in yield
because both "Superdooper" and "Super X" have
the letters "a" with them. In this example, "Super X"
is not superior (or significantly different), from variety

"So-So 101" either, as both have a "b" behind their means. Also, "Superdooper Y", "Super X", and "So-So 101" are superior to, or a better term is significantly different from "Old Goody".

Note, in this report, we only have LSD values for this current year's data, and thus you should still take notice of the long term averages. Note that preferably data should have six station years, (usually meaning

Fertilizer Rates Used In 2013

Fort St. John, B.C.	Legal Desc	ription:	SW19 Tp84	4 R18 W6				
	Fertilizer	Pro.		lbs actual/ac E		Enviro-Test Labs		
Crop	Applied	kg/ha	Placement	Recom. vs. Applied	N	P ₂ 0 ₅	K ₂ O	S
Canola	27-0-0-12 6-26-30 11-52-0	253 76 25	banded banded in-furrow	*Recommended = Actually applied =	70 67.7	32 29.2	15 20.3	27 27.1
Flax	27-0-0-12 6-26-30 11-52-0	253 76 25	banded banded in-furrow	*Recommended = Actually applied =	65 67.7	32 29.2	15 20.3	15 27.1
Cereals	46-0-0 6-26-30 11-52-0	167 76 25	banded banded in-furrow	*Recommended = Actually applied =	75 75.3	22 29.2	15 20.3	12 0.0
Field Pea	20.5-0-0-24 6-26-30 11-52-0	41 76 25	banded banded in-furrow	*Recommended = Actually applied =	0 14.1	25 29.2	15 20.3	5 8.8

Dawson Creek, B.C.	Legal Desc	ription:	SW20 Tp7	8 R14 W6				
	Fertilizer	Pro.		lbs actual/ac	Enviro-Test Labs			
Crop	Applied	kg/ha	Placement	Recom. vs. Applied	N	P ₂ 0 ₅	K ₂ O	S
Canola	27-0-0-12 6-26-30 11-52-0	278 76 25	banded banded in-furrow	*Recommended = Actually applied =	80 73.7	25 29.2	20 20.3	27 29.8
Flax	27-0-0-12 6-26-30 11-52-0	157 76 25	banded banded in-furrow	*Recommended = Actually applied =	40 44.6	22 29.2	20 20.3	12 16.8
Wheat & Barley	46-0-0 6-26-30 11-52-0	167 76 25	banded banded in-furrow	*Recommended = Actually applied =	75 75.3	22 29.2	15 20.3	12 0.0
Malt Barley	46-0-0 6-26-30 11-52-0	150 76 25	banded banded in-furrow	*Recommended = Actually applied =	70 68.3	22 29.2	15 20.3	12 0.0
Oat	46-0-0 6-26-30 11-52-0	101 76 25	banded banded in-furrow	*Recommended = Actually applied =	45 48.2	22 29.2	15 20.3	12 0.0
Field Pea	20.5-0-0-24 6-26-30 11-52-0	41 58 25	banded banded in-furrow	*Recommended = Actually applied =	0 13.1	25 25.1	15 15.5	5 8.8

^{*}Recommended = recommendations given by ALS Laboratory Group of Saskatoon, SK., calculated from soil samples pulled earlier in the spring of the same calendar year as planted.

Pesticide Applications

Fort St. John, B.C.	Legal Desc	ription: SW19 Tp84 R18 W6	
Crop	Date Applied	Product Used	Product Rate
Canola	07-Jun-13	Muster (ethametsulfuron methyl)	12 g/ac
		Lontrel 360 (clopyralid)	227 ml/ac
		Poast Ultra (sethoxydim)	200 ml/ac
		Merge	400 ml/ac
Canola CPT (Herb. Systems)	07-Jun-13	WeatherMax (glyphosate) = RR blocks only	400 ml/ac
		Liberty150SN (glufosinate-ammonium)=LL only	1.35 L/ac
		Solo (imazamox) = CL blocks only	11.7 g/ac
Field Pea	04-Jun-13	Sencor (metribuzin) 75%DF	77g/ac
		MCPA Sodium	190ml/ac
Flax	07-Jun-13	Buctril - M (bromoynil + MCPA)	400 ml/ac
Wheat, Barley, Oat	07-Jun-13	Buctril - M (bromoynil + MCPA)	400 ml/ac

Dawson Creek, B.C.	Legal Descr	iption: SW20 Tp78 R14 W6	
Crop	Date Applied	Product Used	Product Rate
Canola (napus & rapa)	12-Jun-13	Muster (ethametsulfuron methyl)	12 g/ac
		Lontrel 360 (clopyralid)	227 ml/ac
		Poast Ultra (sethoxydim)	200 ml/ac
		Merge	400 ml/ac
Canola CPT (Herb. Systems)	21-Jun-13	WeatherMax (glyphosate) = RR blocks only	400 ml/ac
		Liberty150SN (glufosinate-ammonium)=LL only	1.35 L/ac
		Solo (imazamox) = CL blocks only	11.7 g/ac
Field Pea	16-Jun-13	Sencor (metribuzin) 75%DF	77 g/ac
		MCPA Sodium	190 ml/ac
Flax	16-Jun-13	Buctril-M (bromoynil + MCPA)	400 ml/ac
Malt Barley Oat	16-Jun-13	Buctril-M (bromoynil + MCPA)	400 ml/ac
Wheat, Barley, Trit	16-Jun-13	Buctril-M (bromoynil + MCPA)	400 ml/ac
,,			

All seed was treated with seed treatment: canola with Helix Xtra®; cereal & flax with Raxil FL®; and pea seed with Apron Maxx RTA.

Planting and Harvest Information

	i landing and the vocamormation											
		Seeding rate		Date	Soil Temp	Seeding		Harvesting				
Loc.	Crop	lbs/ac	kg/ha	Planted	(C°) @ plant	Depth	Harvest Date	Method				
FSJ	Napus Canola	8	8.9	13-May-13	10	0.75 - 1 inch	05-Oct-13	desiccate/direct				
	Flax	40	45	13-May-13	10	0.75 - 1 inch	11-Oct-13	desiccate/direct				
	Barley	77	86	16-May-13	8	0.75 - 1 inch	07-Sep-13	direct				
	CWRS Wheat	90	101	16-May-13	8	0.75 - 1 inch	12-Sep-13	desiccate/direct				
	CPS/CWES	90	101	16-May-13	8	0.75 - 1 inch	23-Sep-13	desiccate/direct				
	Oat	81	90	16-May-13	8	0.75 - 1 inch	12-Sep-13	desiccate/direct				
	Triticale	117	131	16-May-13	8	0.75 - 1 inch	26-Sep-13	direct				
	Field Pea	149	167	11-May-13	7.5	0.75 - 1.25 inch	04-Sep-13	desiccate/direct				
DC	Napus Canola	8	8.9	14-May-13	10	1-1.25 inch	29-Sep-13	desiccate/direct				
	Flax	40	45	11-May-13	8	0.75-1 inch	12-Oct-13	desiccate/direct				
	Barley	77	86	17-May-13	10	0.75-1 inch	06-Sep-13	direct				
	CWRS Wheat	90	101	17-May-13	10	0.75-1 inch	09-Sep-13	desiccate/direct				
	CPS/CWES	90	101	17-May-13	10	0.75-1 inch	20-Sep-13	desiccate/direct				
	Oat	81	90	18-May-13	10	0.75-1 inch	13-Sep-13	desiccate/direct				
	Triticale	117	131	17-May-13	10	0.75-1 inch	27-Sep-13	direct				
	Field Pea	149	167	10-May-13	9	0.75 -1 inch	06-Sep-13	direct				

Muster® and Refine Extra® are registered trademarks of DuPont Canada Inc.

Basagran Forte®, Post Ultra®, MCPA Sodium 300®, Solo® and Merge® are registered trademarks of BASF Canada.

Lontrel® and Curtail M® are registered trademarks of Dow AgroSciences Canada Inc.

Buctril M®, Sencor 75 DF®, Decis®, Raxil FL®, Liberty® and Vitaflo 280® are registered trademarks of Bayer CropScience Canada Inc. Helix Xtra® is a registered trademark of Syngenta Crop Protection Canada Inc.

AgSurf® is a registered trademark of IPCO

CANADA WESTERN RED SPRING WHEAT

As grain yields increase, protein content generally decreases. Some of the newer varieties have both higher protein and grain yield. To control true *loose smut* of wheat only a systemic fungicide will work as the pathogen is found inside the seed. To control the other types of smut (*covered*, *false loose* and *bunt*) a non-systemic fungicide seed treatment will work as the disease pathogen is on the outside of the seed.

CWRS Wheat								Yield	as %	of Kate	pwa	
	Dawson Creek					Fort St. John				B.C. Peace		
		Yield		- 2013	20)13 Y			- 2013	2013	2008-2	
Variety	bu /	% of	Avg.	Station	bu /		% of	Avg.	Station	Avg.	Avg.	Station
,	acre	Check	(%)	Years	acre		Check	(%)	Years	(%)	(%)	Years
5604HR CL	110 a-		97	[5]	95	efg	96	100	[5]	99	99	[10]
5605HR CL *	117 a	109	109	[1]	109	abc	110	110	[1]	109	109	[2]
AAC Bailey	105 fg	98	105	[3]	89	g	91	107	[3]	94	106	[6]
AAC Brandon	112 a-	105	105	[2]	105	а-е	107	120	[2]	106	112	[4]
AAC Elie	109 a-	g 101	107	[2]	106	a-d	108	122	[2]	105	114	[4]
AAC Iceberg * **	114 a-	e 107	107	[1]	108	abc	109	109	[1]	108	108	[2]
AAC Redwater	107 c-	100	98	[2]	94	efg	96	105	[2]	98	102	[4]
AC Barrie	106 d-	g 99	94	[6]	101	b-f	102	103	[6]	100	99	[12]
BW947 * ∆	106 d-	g 99	99	[1]	99	c-g	100	100	[1]	100	100	[2]
Carberry	105 fg	98	109	[5]	93	fg	94	112	[5]	96	110	[10]
Cardale	113 a-	105	104	[2]	105	а-е	106	108	[2]	106	106	[4]
CDC Abound	112 a-	105	111	[6]	102	a-f	104	114	[6]	104	113	[12]
CDC Alsask	112 a-	104	105	[6]	107	abc	109	107	[6]	107	106	[12]
CDC Go	116 ab	108	105	[6]	104	a-f	105	109	[6]	107	107	[12]
CDC Osler	105 ef	98	101	[6]	95	efg	96	104	[6]	97	103	[12]
CDC Plentiful	108 b-	101	103	[2]	103	a-f	105	109	[2]	103	106	[4]
CDC Stanley	115 ab		103	[5]	111	ab	113	108	[5]	110	105	[10]
CDC Thrive	111 a-		97	[5]	102	a-f	103	111	[5]	103	104	[10]
CDC Utmost	110 a-	103	103	[5]	107	abc	109	110	[5]	106	107	[10]
CDC VR Morris	109 a-	q 101	98	[2]	103	a-f	104	105	[2]	103	102	[4]
CDC Whitewood * ** A	107 c-		100	[1]	94	efg	95	95	[1]	98	98	[2]
Infinity	113 a-	-	106	[6]	113	a	114	112	[6]	110	109	[12]
Katepwa	107 c-		100	[6]	99	c-g	100	100	[6]	100	100	[12]
Muchmore ***	105 fg	98	104	[5]	102	a-f	104	116	[5]	101	110	[10]
PT584 * Δ	100 g	94	94	[1]	96	d-g	97	97	[1]	95	95	[2]
PT765 * Δ	101 g	94	94	[1]	94	efg	95	95	[1]	95	95	[2]
Shaw	115 a-		103	[5]	105	a-e	107	111	[5]	107	107	[10]
Superb	116 at		113	[6]	110	abc	112	122	[6]	110	118	[12]
SY433	106 c-		103	[3]	99	c-g	101	106	[3]	100	104	[6]
Unity	117 a	109	107	[6]	108	abc	109	111	[6]	109	109	[12]
Whitehawk **	108 b-		94	[2]	96	d-g	97	103	[2]	99	98	[4]
LSD (P=.05) =	4.96				6.46							
CV value (%) =	3.2				4.49							
(,,,,	-											

^{*} first year tested, very limited data available

Katepwa check variety

** CWHWS Canadian Western Hard White Spring Wheat

*** semi-dwarf type

 Δ denotes materials not registered

Means followed by the same letter
do not significantly differ (P=.05, LSD)

CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties

CDC Utmost, Shaw, and Unity are Wheat Midge Resistant varieties

AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

CWRS Wheat	t									,	Va	rie	ty Descriptions
	В.	C. Pea	ice Aver	ages			All	oerta A	gdex 1	100/32	2		
		200	8 - 2013					Resis	stance	to:			
	Days to		Bushel	Ker	nel		ng		on		Spot		
	Maturity	Height	Weight	Prote	ein %	Lodging	Sprouting	Loose Smut	Common Bunt	pe st	af Sp	ш	
Variety	+/- check	cm	lbs/bu	+/- C	heck	Loc	Spi	Loc Sm	Comi	Stripe Rust	Leaf	FHB	Distributor
■ 5604HR CL	-7.1	83	65	0	[10]	G	G	Р	F	XX	Р	F	Crop Production Services
■ 5605HR CL *	8.0	105	65	1	[2]								Crop Production Services
■ AAC Bailey	-2.8	95	64	0	[6]	G	G	Р	F	XX	F	F	Canterra Seeds
■ AAC Brandon	-0.5	77	65	0	[4]	G	Р	G	VP	G	F	G	SeCan
■ AAC Elie	-0.4	78	65	1	[4]	G	F	F	F	G	F	F	Alliance Seed Corporation
■ AAC Iceberg * **	0.9	92	65	0	[2]	G	Р	Р	F	G	Р	F	Alliance Seed Corporation
■ AAC Redwater	-3.5	86	65	1	[4]	G	VG	Р	F	G	Ρ	F	SeCan
AC Barrie	-1.6	81	64	1	[12]	G	G	G	F	VP	Ρ	F	SeCan
BW947 * ∆	1.2	103	65	0	[2]								U of A
Carberry	-0.5	77	65	0	[10]	VG	F	G	VG	G	Р	G	SeCan
Cardale	-2.4	81	63	0	[4]	G	G	F	VP	G	Р	G	Seed Depot
CDC Abound	-0.6	75	65	0	[12]	G	F	F	F	Р	Ρ	VP	Crop Production Services
CDC Alsask	-2.3	83	63	0	[12]	F	G	G	G	F	VP	Р	Crop Production Services
CDC Go	-2.6	74	64	0	[12]	G	VP	Р	F	G	VP	Р	Public Variety
CDC Osler	-3.3	79	63	0	[12]	G	F	G	G	F	F	VP	Public Variety
CDC Plentiful	-0.8	86	64	1	[4]	VG	Р	VG	F	G	F	G	FP Genetics
CDC Stanley	-2.3	83	63	0	[10]	G	G	G	VP	F	F	Р	Crop Production Services
CDC Thrive	-3.4	85	64	0	[10]	G	Р	G	F	F	F	Р	SeCan
CDC Utmost	-1.0	84	64	0	[10]	G	G	Р	VP	F	F	Р	FP Genetics
CDC VR Morris	-1.3	86	65	1	[4]	G	Р	F	F	XX	F	G	Crop Production Services
■ CDC Whitewood * ** ∆	-0.1	92	65	0	[2]								U of S
Infinity	-0.4	80	63	0	[12]	G	G	G	G	Р	Ρ	VP	Canterra Seeds
Katepwa	0.0	85	63	0	[12]	F	F	G	G	Р	Ρ	F	SeCan
■ Muchmore***	-0.3	74	65	0	[10]	VG	G	G	VG	G	Ρ	Р	FP Genetics
PT584 * ∆	-1.7	98	65	1	[2]								U of S
PT765 * ∆	-1.6	103	66	1	[2]								U of A
■ Shaw	-2.3	88	65	0	[10]	G	G	VP	G	F	Ρ	Р	SeCan
Superb	-0.3	78	65	0	[12]	G	F	F	G	VP	VP	Р	SeCan
■ SY433	-1.9	100	65	0	[6]	G	G	F	VP	XX	F	G	Syngenta
Unity	-1.6	81	65	0	[12]	G	G	Р	VG	Р	Р	Р	SeCan
■ Whitehawk **	-1.7	86	64	0	[4]	G	G	F	Р	Р	Р	F	SeCan

^{*} first year tested, very limited data available

CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties

CDC Utmost, Shaw, and Unity are Wheat Midge Resistant varieties

AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

VG = very good, G = good, F = fair, P = Poor, VP = very poor

*** semi-dwarf type

XX = insufficient data

Average protein for Katepwa is 13.3 % Overall average maturity for Katepwa is 106 days

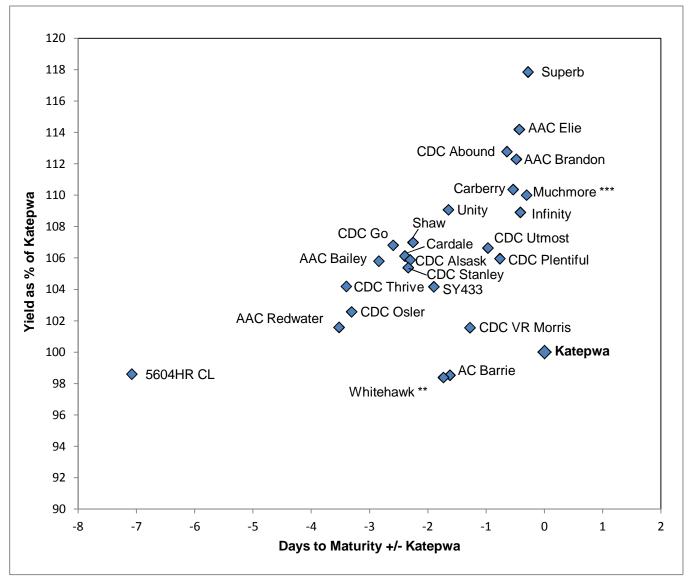
FHB = Fusarium Head Blight

■ Protected by Plant Breeders' Rights

Katepwa check variety

^{**} CWHWS = Canadian Western Hard White Spring Wheat

 $[\]Delta$ denotes materials not registered


Average maturity for Katepwa is 110 days for 2013

* first year tested, very limited data available ** CWHWS Canadian Western Hard White Spring Wheat

 $\boldsymbol{\Delta}$ denotes materials not registered

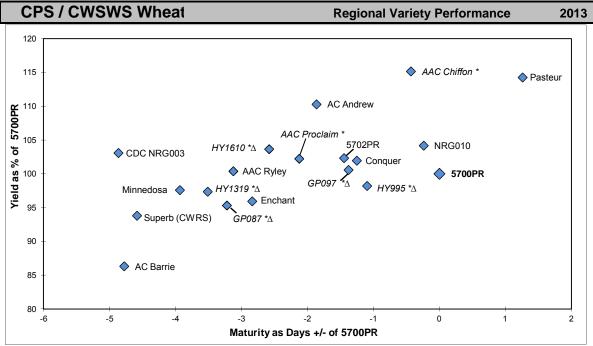
*** semi-dwarf type

CDC Abound, 5605HR CL and 5604HR CL are Clearfield® tolerant varieties
CDC Utmost, Shaw, and Unity are Wheat Midge Resistant varieties
AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety

Overall average maturity for **Katepwa** is **106** days
*** semi-dwarf type

** CWHWS Canadian Western Hard White Spring Wheat CDC Utmost, Shaw, and Unity are Wheat Midge Resistant varieties AAC Bailey is a (solid-stemmed) Wheat Stem Sawfly resistant variety CDC Aboundand 5604HR CL are Clearfield® tolerant varieties

CANADA PRAIRIE SPRING WHEAT


CANADA WESTERN SOFT WHITE SPRING WHEAT

All current Canada General Purpose Spring varieties (CPS and CWSWS are in this class) should be treated with a systemic fungicide seed treatment to control smut. Avoid deep seeding General Purpose wheats. Note the long maturity periods required for the production of currently available CWSWS wheat varieties. Seeding rates for all classes of wheat covered by the new class "General Purpose" should be increased 20 to 25% due to the larger kernel size.

CPS / CWS	WS Wh	eat								Yield	l as %	% of 5700	PR	
			D	awson (Creek			F	ort St. Jo	hn		B.C	. Peac	е
		20	013 Y	ield	2008 -	2013		2013 Y	/ield	2008 -	2013	2013	2008	3-2013
Variety	Type	bu /		% of	Avg.	Stn.	bu /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
5700PR	CPS-red	116	de	100	100	[5]	119	c-g	100	100	[6]	100	100	[11]
5702PR	CPS-red	123	а-е	106	99	[5]	118	c-g	99	103	[6]	102	101	[11]
AAC Chiffon *	CWSWS	134	а	116	116	[1]	136	а	114	114	[1]	115	115	[2]
AAC Proclaim *	CWSWS	119	b-e	103	103	[1]	121	b-e	101	101	[1]	102	102	[2]
AAC Ryley	CPS-red	117	b-e	101	101	[1]	118	c-g	99	101	[2]	100	101	[3]
AC Andrew	CWSWS	131	abc	113	107	[5]	128	b	107	111	[6]	110	109	[11]
AC Barrie	CWRS	101	f	87	82	[2]	102	h	85	86	[2]	86	84	[4]
CDC NRG003	CWGP	122	а-е	105	98	[3]	120	b-f	101	97	[4]	103	97	[7]
Conquer	CPS-red	118	b-e	102	95	[3]	122	bcd	102	92	[4]	102	94	[7]
Enchant	CPS-red	113	def	97	97	[1]	113	efg	94	93	[2]	96	95	[3]
GP087 * ∆	CWGP	111	def	96	96	[1]	112	efg	94	94	[1]	95	95	[2]
GP097 *∆	CWGP	125	a-d	108	108	[1]	111	g	93	93	[1]	101	101	[2]
HY1319 *∆	CWGP	115	de	100	100	[1]	113	d-g	95	95	[1]	97	97	[2]
HY1610 *∆	CWGP	120	а-е	104	104	[1]	123	bc	103	103	[1]	104	104	[2]
HY995 *∆	CWGP	116	cde	100	100	[1]	114	c-g	96	96	[1]	98	98	[2]
Minnedosa	CPS-white	114	de	99	94	[3]	115	c-g	96	94	[4]	98	94	[7]
NRG010	CPS-white	124	а-е	107	101	[4]	120	b-e	101	100	[5]	104	100	[9]
Pasteur	CWGP	132	ab	114	114	[1]	137	а	115	111	[2]	114	113	[3]
Superb	CWRS	109	ef	94	98	[5]	111	fg	93	99	[6]	94	98	[11]
LSD (P=.05) =		9.13	3				5.29	9	_					
CV value (%) =		5.42	2				3.15	5						

^{*} first year tested, very limited data avaliable 5700PR - check variety

Enchant and Conquer are Wheat Midge tolerant Varietal Blend $\Delta\,$ denotes materials not registered

 Δ denotes materials not registered

Average maturity for 5700PR is 116 days for 2013

CPS / CWSW	VS Whe	at									1	/ar	iety	y Descriptions
		В.0		ce Avera 8-2013	ages			Al		Agdex stance		32		
Variety	Туре	Maturity in days +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- ch	in %	Lodging	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
5700PR	CPS-red	0.0	71	64	0	[11]	VG	F	Р	VG	Р	Р	Р	Crop Production Services
5702PR AAC Chiffon * AAC Proclaim *	CPS-red CWSWS CWSWS	-0.2 -0.4 -2.1	76 115 106	63 63 64	0 -1 0	[11] [11] [2] [2]	G	P	P	F	P	F	P	Crop Production Services AAFC Lacombe FP Genetics
AAC Ryley AC Andrew	CPS-red CWSWS	-1.2 0.9	86 75	64 64	1 -1	[3] [11]	G VG	G P	F VP	VG P	VP F	P P	P VP	SeCan SeCan
AC Barrie CDC NRG003	CWRS CWGP	-3.8 -3.2	84 84	64 63	2 0	[4] [7]	G G	G F	G P	F VG	VP XX	P P	F VP	SeCan Canterra Seeds
Conquer Enchant GP087 * Δ	CPS-red CPS-red CWGP	0.4 -0.7 -3.2	91 95 95	64 65 65	2 1 1	[7] [3] [2]	G F	P G	P P	VG VG	G XX	F P	P VP	Canterra Seeds FP Genetics Syngenta Canada Inc.
■ GP097 * Δ	CWGP	-1.4	91	64	0	[2]								AAFC Lacombe
HY1319 *Δ HY1610 *Δ HY995 *Δ Minnedosa	CWGP CWGP CPS-white	-3.5 -2.6 -1.1 -3.6	80 98 91 87	65 65 64 64	1 1 1 1	[2] [2] [2] [7]	G	G	F	G	G	P	Р	AAFC Lacombe AAFC Winnipeg Syngenta Canada Inc. SeCan
NRG010 Pasteur	CPS-white CWGP	1.1 2.3	84 85	63 65	0	[9] [3]	G VG	P G	P P	VG VP	VG G	F F	P F	Canterra Seeds SeCan
Superb	CWRS	-2.7	78	65	1	[11]	G	F	F	G	VP	VP	Ρ	SeCan

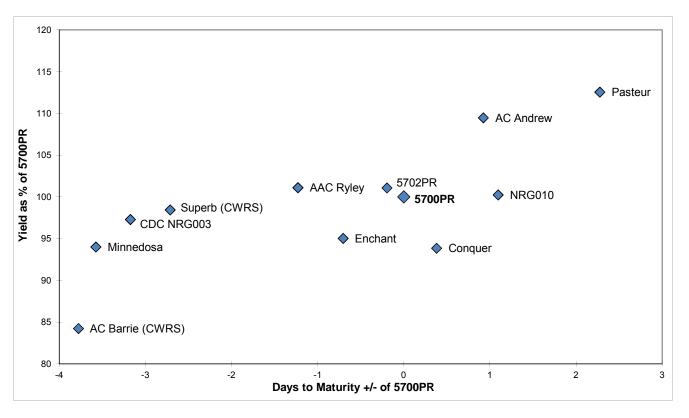
^{*} first year tested, very limited data available

5700PR - check variety

■ Protected by Plant Breeders' Rights

Overall average maturity for **5700PR** is **106** days. Overall average protein for **5700PR** is **11.7** %

VG = very good, G = good, F = fair, P = Poor, VP = very poor


XX = insufficient data

"blanked Tolerance data" = no data available yet (too new)

 $\Delta\,$ denotes materials not registered

Numbers in square brackets [] is number of station years collected for protein

CPS / CWSWS Wheat Regional Variety Performance 2008-2013

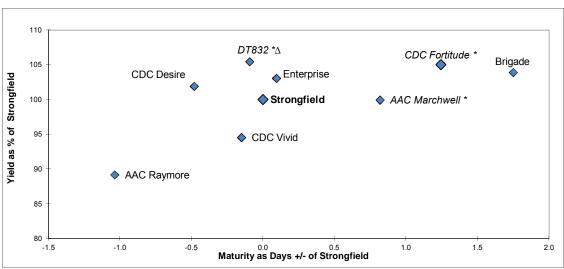
DURUM WHEAT

Durum is a type of wheat which is used to make pasta products (macaroni, spaghetti, etc.) and Canada has become a world leader in quality durum. Durum plant breeding within Canada is also moving toward even higher protein content and is developing a brand new category of high gluten strength durum for a specialty pasta market. However, durum requires a long growing season and high heat, two things the Peace River region is not known for having. In the past, durum production has been concentrated in the southern parts of the Canadian prairies.

However, a few producers in northwestern Alberta have had success growing the crop and for this reason it has been tested here in the B.C. Peace. Often surprises arise in our northern long-daylight region and so it was worth investigating durum in a limited fashion. Most varieties of durum wheat currently available are suggested by literature to have approximately 10 days later maturity than CWRS wheat. This is not always the case locally but held true in 2011 (a very wet & late year). Durum should thus not be grown in large acreage within the B.C. Peace River region for grain production until more is understood about its agronomics and interest develops among the grain buyers to purchase the end product from the region - admittedly a vicious circle of acceptance and trial and error. Therefore, caution should be taken when attempting to grow durum in the B.C. Peace region, and disclosure of this data is currently not a recommendation to grow durum in the Peace.

It appears, however, that the B.C. Peace River region has one really big advantage in growing durum, as traditionally we do not have to be concerned about fusarium, a major problem in most durum growing regions. 2013 proved to produce some evidence of fusarium in some wheat due to an exceptionally consistent year for moisture. Whether this is a fluke or the new norm is not known, but would be a concern for the growing of durum wheat anywhere. For interest sake then, data collected within the B.C. Peace region has been disclosed as it appears that durum could hold some economic promise to our region in years to come - assuming a buyer/market develops. The test years 2009 and 2010 unfortunately were years of severe drought and poor yield potentials, but compared to other wheat yields over the same period of time at the same testing locations, durum was respectable in yield by comparison and even seemed to survive the drought better than other wheat types. 2013 and 2011 were very wet & late maturing years but did not change the crop's promising outlook as a new viable crop-type for our region, noting however that if a normal killing frost would have occurred it would have been bad news in both 2013 or 2011 for anything later than a CWRS wheat even if just a few days later.

Durum Whea	t								Yield	l as %	of Stroi	ngfield	t
			Dawson C	Creek			F	ort St. Jo	hn		B.0	C. Peac	е
		2013	Yield	2009 -	2013	2	2013 \	Yield .	2009 -	2013	2013	2009 -	2013
Variety	Туре	bu / acre	% of check	Avg. (%)	Stn. Yrs.	bu / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AAC Marchwell *	CWAD	118 a	94	94	[1]	108	bc	105	105	[1]	100	100	[2]
AAC Raymore	CWAD	108 b	86	104	[2]	94	d	92	95	[2]	89	100	[4]
Brigade	CWAD	122 a	98	108	[5]	113	ab	110	104	[5]	104	106	[10]
CDC Desire	CWAD	125 a	100	111	[2]	107	bc	104	107	[2]	102	109	[4]
CDC Fortitude *	CWAD	127 a	101	101	[1]	111	ab	109	109	[1]	105	105	[2]
CDC Vivid	CWAD	120 a	96	101	[2]	95	d	93	98	[2]	95	99	[4]
DT832 *∆	CWAD	123 a	98	98	[1]	115	а	112	112	[1]	105	105	[2]
Enterprise	CWAD	127 a	101	107	[5]	107	bc	105	103	[5]	103	105	[10]
Strongfield	CWAD	125 a	100	100	[5]	102	С	100	100	[5]	100	100	[10]
LSD (P=.05) =		5.45				5.26	6	_					
CV value (%) =		3.07				3.40)						


Strongfield - check variety

AAC Marchwell is a wheat midge tolerant variety

AAC Raymore and CDC Fortitude are stem sawfly (solid stem) resistance varieties

 $\Delta\,$ denotes materials not registered * first year tested, very limited data available

Durum Wheat Regional Variety Performance 2013

Average maturity for Strongfield is 115 days for 2013

Durum Whe	at												Va	riety Descriptions
		В.С		ce Avera 9 - 2013	ages				Alb	erta A	gdex 1 tance		32	_
Variety	Туре	Maturity in days +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- ch	in %	Lodging	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
AAC Marchwell *AAC RaymoreBrigade	CWAD CWAD CWAD	0.8 0.2 1.7	98 87 87	65 63 64	0 1 -1	[2] [4] [10]	F G	F F	P P	G VG	G G	F F	VP P	SeCan SeCan Crop Production Services
■ CDC Desire CDC Fortitude * ■ CDC Vivid	CWAD CWAD CWAD	0.8 1.2 1.3	86 98 86	64 65 63	0 0 0	[4] [2] [4]	F G	G F	P F	VG VG	G XX	F F	VP VP	Syngenta Crop Production Services Crop Production Services
DT832 *∆ ■ Enterprise ■ Strongfield	CWAD CWAD CWAD	-0.1 -0.7 0.0	98 82 78	65 64 64	-1 -1 0	[2] [10] [10]	G F	F F	P VP	G F	VG G	F P	P VP	U of S Canterra Seeds SeCan

VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

* first year tested, very limited data available

 $\Delta\,$ denotes materials not registered

Protected by Plant Breeders' Rights

Strongfield - check variety

Numbers in square brackets [] is number of station years collected for protein

AAC Marchwell is a wheat midge tolerant variety

AAC Raymore, CDC Fortitude are stem sawfly (solid stem) resistance varieties

Overall average maturity for Strongfield is 109 days Overall average protein for Strongfield is 14.5 %

Durum Wheat 2009-2013 **Regional Variety Performance** 115 110 CDC Desire Yield as % of Strongfield Brigade 105 Enterprise 100 Strongfield 🔷 AAC Raymore CDC Vivid 95 90 -2 0 -1 2 3 Maturity as Days +/- of Strongfield

Barley

Six Row B	arley								Yield	as % (of AC	Metca	lfe	
			Da	awson (Creek			F	ort St. Jo	ohn		В.0	C. Peac	е
		20	013 Yi	eld	2008-	2013	2	013 \	rield .	2008-	2013	2013	2008-2	2013
Variety	Type	bu / acre		% of check	Avg. (%)	Stn. Yrs.	bu / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Lacombe	Feed	137	abc	107	105	[6]	148	bc	105	105	[6]	106	105	[12]
AC Metcalfe	Malt	128	cd	100	100	[6]	141	С	100	100	[6]	100	100	[12]
Amisk *	Feed	142	abc	110	110	[1]	160	а	114	114	[1]	112	112	[2]
Breton ***	Feed	136	abc	106	109	[2]	151	b	108	108	[2]	107	108	[4]
CDC Anderson	Malt	134	bc	105	102	[3]	145	bc	103	105	[3]	104	104	[6]
CDC Mayfair	Malt	129	cd	101	102	[6]	147	bc	105	98	[6]	103	100	[12]
Celebration	Malt	119	d	93	102	[4]	141	С	100	100	[4]	97	101	[8]
Muskwa ***	Feed	147	ab	115	114	[3]	148	bc	105	109	[3]	110	112	[6]
Sundre***	Feed	150	ab	116	104	[6]	165	а	117	113	[6]	117	108	[12]
Vivar **	Feed	152	а	118	109	[6]	159	а	113	109	[6]	116	109	[12]
LSD (P=.05) =		11.06	-				6.76	5						
CV value (%) =		5.55					3.10)						

Two Row Ba	rley								Yield	as % d	of AC	Metcal	fe	
			Da	wson (Creek			F	ort St. Jo	ohn		B.C	C. Peac	е
		20	13 Yie	eld	2008-2	2013	2	2013 Y	'ield	2008-	2013	2013	2008-	2013
Variety	Type	bu /		% of	Avg.	Stn.	bu /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre	(check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
AAC Synergy	Malt	145	b-e	95	98	[2]	153	b-e	93	98	[2]	94	98	[4]
ABI Voyager *	Malt	137	b-f	90	90	[1]	147	de	89	89	[1]	90	90	[2]
AC Metcalfe	Malt	153	ab	100	100	[6]	164	abc	100	100	[6]	100	100	[12]
Bentley	Malt	147	a-d	96	103	[6]	161	a-d	98	100	[6]	97	102	[12]
Brahma	Feed	150	abc	98	111	[5]	163	abc	99	105	[5]	99	108	[10]
Canmore *	Feed	142	b-f	93	93	[1]	166	ab	101	101	[1]	97	97	[2]
CDC Clear ¶	Malt	111	g	91	92	[3]	112	f	85	96	[3]	88	94	[6]
CDC Kindersley	Malt	141	b-f	92	102	[4]	148	de	90	98	[4]	91	100	[8]
CDC Maverick ***	Feed	130	ef	85	93	[3]	147	de	90	95	[3]	87	94	[6]
CDC Meredith	Malt	136	c-f	89	106	[6]	156	b-e	95	106	[6]	92	106	[12]
CDC PolarStar	Malt	128	f	84	93	[3]	149	de	90	93	[3]	87	93	[6]
Cerveza	Malt	142	b-f	93	107	[5]	153	b-e	93	103	[5]	93	105	[10]
Champion	Feed	145	b-e	95	129	[6]	153	b-e	93	105	[6]	94	117	[12]
Major	Malt	137	c-f	89	98	[5]	151	cde	92	100	[5]	91	99	[10]
Merit 57	malt	160	а	104	113	[5]	173	а	105	108	[5]	105	111	[10]
Newdale	Malt	133	def	87	106	[6]	147	de	89	101	[6]	88	104	[12]
TR10214 *∆	Malt	141	b-f	92	92	[1]	154	b-e	93	93	[1]	93	93	[2]
TR11698 *∆	Feed	147	a-d	96	96	[1]	172	а	105	105	[1]	100	100	[2]
XENA	feed	134	def	87	107	[6]	145	е	88	99	[6]	88	103	[12]
LSD (P=.05) =		9.39					8.76	6						
CV value (%) =		4.75					4.04	1						

AC Metcalfe - check variety for 2 row AC Metcalfe - check variety for 6 row

Means followed by the same letter do not significantly differ (P=.05, LSD)

^{*} first year tested, very limited data available

^{**} semi-dwarf type

^{***} smooth-awned type

 $[\]P$ denotes hulless seed types (bu/ac adjusted for hulless) Δ denotes materials not registered

Feed Barlo	ey												Variety Descriptions
		В.0		e Avera 3-2013	iges				Agdex Resista			fo	
Variety	Туре	Days to Maturity +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- cl	in %	Lodging	Loose Smut	False Smut	Root Rot	Scald	FHB	Distributor
			Eligible	for Gener	ral Pur	pose Gi	rades (Only					
AC LacombeBreton ***Brahma	6 row 6 row 2 row	-0.7 -1.2 1.8	75 91 78	50 51 56	-1 -1 0	[11] [4] [10]	G F G	P P P	G G VG	P F G	P F VP	VP VP F	SeCan Canterra Seeds Crop Production Services
Canmore* Champion Muskwa ***	2 row 2 row 6 row	0.9 2.6 0.4	94 73 88	55 55 54	0 -1 -1	[2] [12] [4]	G G	VP P	VG VG	XX P	VP G	F VP	Canterra Seeds Crop Production Services SeedNet
■ Sundre *** TR11698*△ ■ XENA	6 row 2 row 2 row	5.7 0.8 0.8	80 96 73	53 54 54	-1 -1 0	[11] [2] [12]	G G	P P	VG P	P G	VG VP		Mastin Seeds AAFC Lacombe Crop Production Services
				Semi-d	warf	varietie	es						
■ <i>Amisk</i> * , ** ■ Vivar **	6 row 6 row	0.7 -0.6	88 70	48 51	0 -1	[2] [11]	VG	F	VG	G	F	VP	SeCan SeCan
■ CDC Maverick ***	2 row	3.2	111	Foraç 57	ge va 1	rieties [6]	F	VP	VG	F	Р	F	SeCan

Malt Barle	y												Variety Descriptions
		В	.C. Peac	e Averag	es			Alberta	Agdex	100	/32 inf	o	
			2008	3-2013				Res	sistance	e to			
		Days to		Bushel	Ker	nel	g			tot			
		Maturity	Height	Weight	Prote	ein %	Lodging	Loose	se	Root Rot	ald	m	
Variety	Туре	+/- check	cm	lbs/bu	+/- c	heck	Po	Loose Smut	False Smut	Ŗ	Scald	FHB	Distributor
■ AAC Synergy	2 row	0.9	81	54	0	[4]	F	VP	F	F	VP	Р	Syngenta
■ ABI Voyager *	2 row	1.9	93	54	0	[2]							Busch Agricultural Resources Inc.
■ AC Metcalfe	2 row	0.0	73	55	0	[23]	F	VG	F	F	VP	F	SeCan
■ Bentley	2 row	0.0	75	53	0	[12]	G	Р	G	G	VP	Р	Canterra Seeds
■ CDC Anderson	6 row	-1.6	94	53	0	[4]	G	G	VG	F	Р	F	SeCan
CDC Kindersley	2 row	-3.5	83	55	0	[8]	G	VP	VG	F	VP	F	SeCan
CDC Mayfair	6 row	-5.6	71	51	0	[10]	G	VP	G	F	VP	Р	Canterra Seeds
CDC Meredith	2 row	3.2	73	54	-1	[12]	F	VG	G	G	VP	F	SeCan
■ CDC PolarStar	2 row	-2.8	97	55	1	[6]	G	VP	VG	Р	VP	G	Canterra Seeds
Celebration	6 row	-5.9	86	53	1	[6]	VG	VG	VG	Ρ	VP	Р	Canterra Seeds
Cerveza	2 row	0.6	78	54	0	[10]	F	VG	VG	F	VP	F	Mastin Seeds
Major	2 row	-0.7	76	53	0	[10]	G	VG	G	F	Р	F	Crop Production Services
■ Merit 57	2 row	3.2	75	54	-1	[10]	F	Р	VP	F	Р	G	Canterra Seeds
Newdale	2 row	-0.3	72	54	0	[12]	F	VP	G	G	Р	F	FP Genetics
TR10214 *∆	2 row	2.0	98	53	1	[2]							U of S
				Hulle	ss va	rieties							
■ CDC Clear ¶	2 row	0.9	100	64	0	[6]	G	VG	VG	F	VP	G	U of S

^{*} first year tested, very limited data available

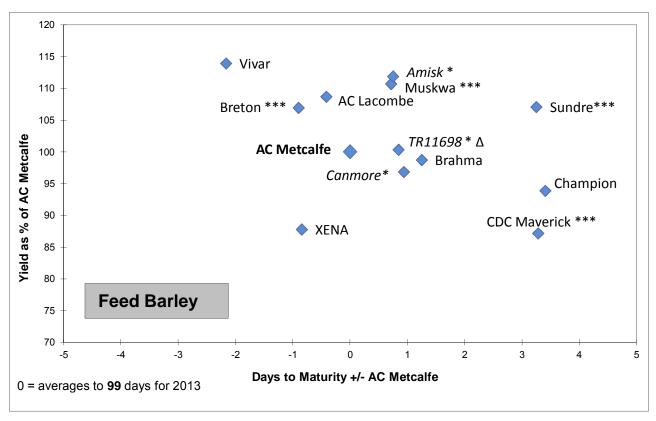
¶ denotes hulless seed types

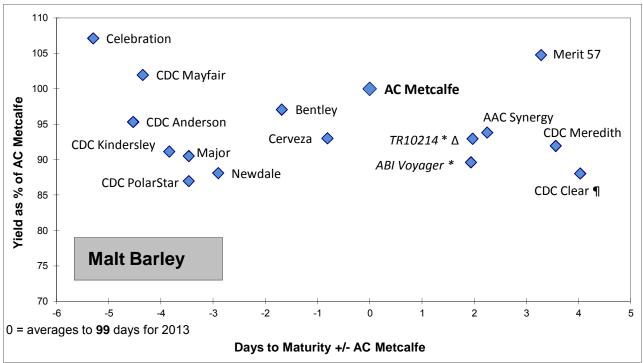
■ Protected by Plant Breeders' Rights

 Δ denotes materials not registered

VG= very good, G = good, F = fair, P = poor, VP = very poor

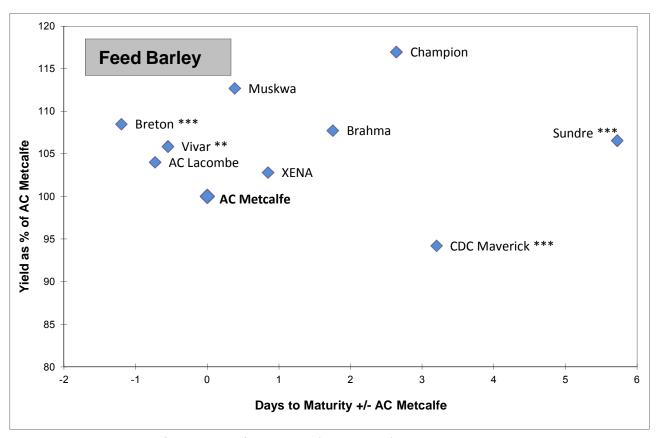
XX = insufficient data

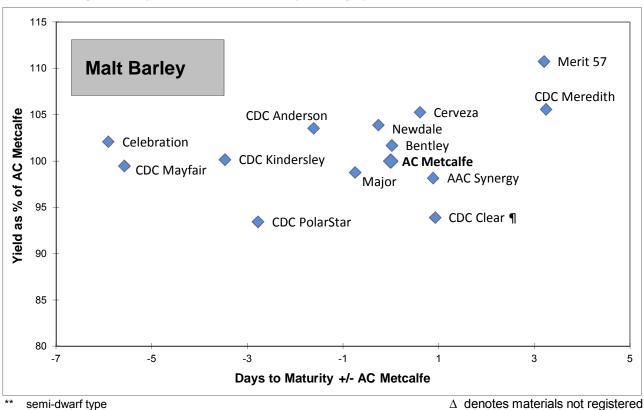

Overall average maturity for AC Metcalfe is 93 days


Overall average protein for AC Metcalfe is 13.8%

Numbers in square brackets [] is number of station years collected for protein

** semi-dwarf type *** smooth-awned type


AC Metcalfe - check variety



^{*} first year tested materials

 $\begin{array}{ccc} \Delta \ \ \text{denotes materials not registered} \\ \P \ \ \text{denotes hulless seed types} \\ ^{**} \ \ \text{semi-dwarf type} \\ \end{array}$

Overall average maturity for AC Metcalfe is 93 days (both graphs)

Δ denotes materials not registered ¶ denotes hulless seed types

smooth-awned type

OAT

Oat is usually a feed crop but some varieties are also suitable for higher value feed and food markets. The milling industry prefers higher protein varieties with plump kernels and lower hull content, while the horse industry prefers white hulled varieties. Hulless oat varieties have excellent feed and food value but need to be stored drier than normal varieties (<12% moisture) and do not flow as well in the bin due to their pubescence (hairs), which seem to "lock together". The exception to this "hairy-hulless" issue is the variety *Gehl* - included for the first time in the 2011 season - which is a "*low pubescence* hulless" oat aimed at a replacement for rice actually, hence its marketing slogan "Prairie Rice". A potential contracted market in the Peace River area is a real possibility if agronomics work out for *Gehl* but in both 2012 and 2013 wet soils expressed poor vigor of the germinating seed due to our cool clay soils and so 2012-2013 data was removed from the full dataset. This will set back any development of this market until more vigorous "hairless hulless" lines come along that can handle our soils and spring conditions as wet and cool soils during emergence are more the norm in the Peace River region. Yield values for all hulless oat varieties are expressed after hull removal, which reduces the seed weight by 20-25% compared to the normal hulled oat varieties. Keep this ratio in mind while comparing hulless to hulled when such data is present.

Oat							Yield	as % d	of CD	C Danc	er	
			awson C	Creek		F	ort St. Jo	ohn		В.0	C. Peac	е
		2013 \	/ield	2008-	2013	2013 Y	ïeld	2008-	2013	2013	2008-	2013
Variety	Colour	bu / acre	% of check	Avg. (%)	Stn. Yrs.	bu / acre	% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AAC Justice *	Yellow	236 ab	94	94	[1]	266 abc	117	117	[1]	106	106	[2]
AC Mustang	White	241 ab	96	109	[6]	274 ab	121	114	[6]	109	112	[12]
CDC Big Brown	Brown	226 bc	90	97	[4]	250 bc	110	106	[4]	100	101	[8]
CDC Dancer	White	250 a	100	100	[6]	227 d	100	100	[6]	100	100	[12]
CDC Haymaker *	Yellow	216 c	86	86	[1]	254 bc	112	112	[1]	99	99	[2]
CDC Nasser	Yellow	229 bc	92	94	[3]	263 abc	116	106	[3]	104	100	[6]
CDC Ruffian	White	246 a	98	88	[2]	257 bc	113	97	[2]	106	93	[4]
CDC Seabiscuit	Yellow	224 bc	90	92	[3]	251 bc	111	106	[3]	100	99	[6]
Lu	Yellow	227 bc	91	94	[6]	252 bc	111	103	[6]	101	99	[12]
Souris	Yellow	226 bc	90	91	[2]	239 cd	105	104	[2]	98	97	[4]
Stride	White	227 bc	91	92	[3]	254 bc	112	102	[3]	101	97	[6]
Triactor	White	249 a	100	111	[6]	284 a	125	113	[6]	113	112	[12]
LSD (P=.0	05) =	10.88				17.26						
CV value (%) =	3.43				4.91						

Means followed by the same letter do not significantly differ (P=.05, LSD)

CDC Dancer - check variety

* first year tested, very limited data available Δ denotes materials not registered

^{*} Gehl is a "low pubescence hulless" oat intended for the whole grain oat market (see comment above chart)

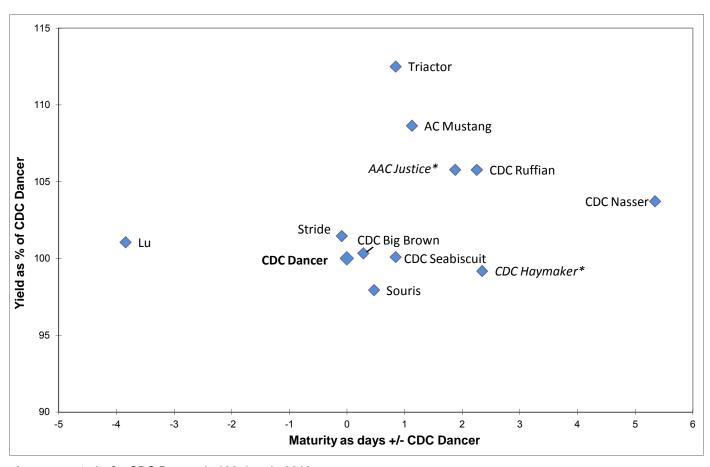
Health Benefits Of Oat

Oats are mainly used for livestock feed especially horses and cows and only a small percentage of oat has been traditionally used for human consumption. However, oat are a great source of fibre which consists of more than half as soluble fibres. Oat is high in protein and mineral contents included calcium, iron, magnesium, zinc, copper, manganese, thiamin, folacin, and vitamin E. They are higher in these components than any other whole grain, such as wheat, barley, corn or rice. Rich in Vitamin B1 they can help maintain carbohydrate metabolism. Many scientific researchers have proven that eating oatmeal, oat bran and whole oat products improves both blood pressure and cholesterol levels and furthermore, it also reduces the risk of heart disease, cancer and diabetes. Thus, oat is a significant contributor to the good health of not only livestock but also to good human health as well.

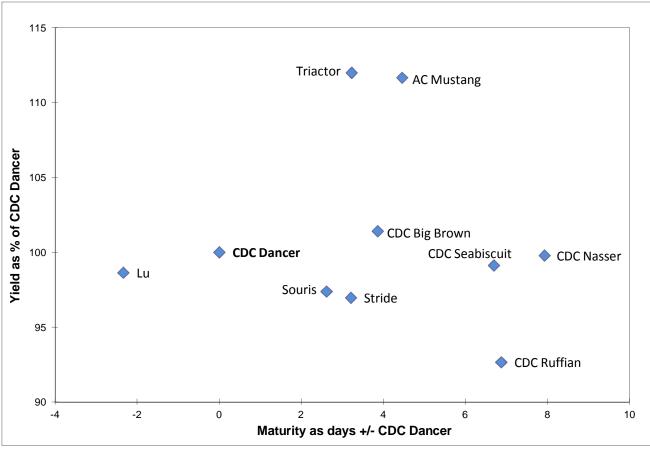
Oat							Variety Descriptions
		BC Peac 2008	e Avera 3 - 2013	•		a Agdex nce to:	100/32 info
	_	Maturity	Usiabt	Bushel	_odging	ıts	
Variety	Туре	as days +/- check	Height cm	Weight lbs/bu	Podg	Smuts	Distributor
■ AAC Justice *	Milling	1.9	118	45			FP Genetics
AC Mustang	Feed/forage	4.5	96	43	G	F	Mastin Seeds
■ CDC Big Brown	Milling	3.9	94	43	G	VG	SeCan
■ CDC Dancer	Milling	0.0	90	42	G	VG	FP Genetics
■ CDC Haymaker *	Forage	2.3	126	42			SeCan
CDC Nasser	Feed	7.9	92	39	G	G	T & L Seeds
■ CDC Ruffian	Milling	6.9	91	42	G	VG	FP Genetics
■ CDC Seabiscuit	Milling	6.7	100	42	G	G	Canterra Seeds
Lu	Feed	-2.3	87	41	G	VG	SeCan
Souris	Milling	2.6	89	42	VG	VG	Seed Depot
■ Stride	Milling	3.2	104	44	G	VG	AAFC-Lacombe
■ Triactor	Milling/Feed	3.2	86	40	G	VG	Canterra Seeds Seeds

CDC Dancer - check variety

■ Protected by Plant Breeders' Rights


VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data


* first year tested, very limited data available

 Δ denotes materials not registered

Oat Regional Variety Performance 2013

Average maturity for CDC Dancer is 102 days in 2013

Overall average maturity for CDC Dancer is 94 days

Oat for Feed

Oat is often sown to provide fodder in the form of silage or greenfeed. Oat will yield more silage or greenfeed per unit area than any other cereal crop. If managed properly, it can provide 3-4.5 tons of dry matter per acre, or more, of high quality feed containing up to 10 percent protein¹. Many years of comparing yields of oat with barley have shown oat to be superior in the Black and Grey Wooded soil zones¹. Although the percent protein level in barley is higher than in oat, the total amount of protein produced on a given area is higher with oat than with barley¹. Oat has about 22-26 percent hull whereas barley averages about 12-14 per cent hull on a weight basis¹. When choosing a variety, the seed yield as well as the forage yield should be considered, thereby keeping one's options open to harvest as forage or grain¹. We do not currently evaluate oat varieties for forage yield in these tests.

Forage Oat

It is believed by some farmers that one variety might be better than another because it appears "leafier"; however, tests on a number of varieties have shown very little variation in leafiness². Having said that however, such work has not likely included the newer lines of forage oat that are entering the market place now. These new "forage only" lines, such as *CDC Baler* and *Murphy*, have usually been much larger plants in our tests than their traditional counterparts developed for seed quality. This should translate to more biomass being made available for forage production. Note however, that traditionally our oat tests do not lodge and so it is unclear as to whether larger plants are going to be a concern for early lodging in a large-scale forage production practice in our area³.

Other Comments

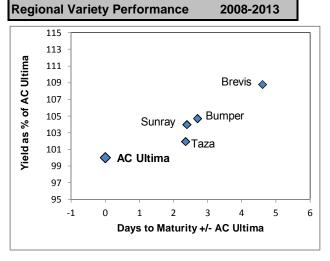
On heavier soils and in the more moist areas, lodging resistance should be considered, but again, traditionally lodging has not been a concern in our BC Peace oat trials³. The variation in straw feed quality between oat varieties is insignificant and should not be used as a variety selection criterion³. The average feed values are: protein 4%, fibre 49%, calcium 0.27%, and phosphorus 0.08%⁴.

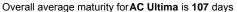
Source^{1,2,4}: Alberta Agriculture, Food, and Rural Development website www.agric.gov.ab.ca Source³: Alberta Agdex 100/32

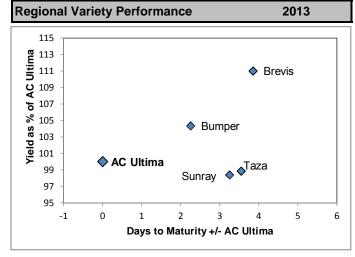
SPRING TRITICALE

Triticale is a genetic cross (not a hybrid) developed by crossing wheat (Triticum turgidum or Triticum aestivum) with rye (Secale cereal). Most varieties of spring triticale currently available are approximately 10 days or more later maturing than CWRS wheat, and as such they should not be grown in the B.C. Peace River region for grain production. However, a few varieties are proving to be earlier than traditional spring triticale varieties, and perhaps as breeding continues earlier lines may come along that can be grown here for grain with a consistent and early enough maturity. Their high grain yields are "attention grabbers", and so it is worth watching their development, especially as triticale seems to hold a lot of potential for ethanol production in the Peace River region if breeding efforts could produce earlier maturing lines. Drought tolerance is the primary advantage that spring triticales have over other spring cereal crops. Spring triticales are also a valuable alternative or compliment to barley & oat as forage feed, but current triticale lines do tend to have low resistance to Ergot, likely due to late maturity. This may become less of a concern as earlier lines are bred. It is for these reasons, especially its potential use as a high volume ethanol feedstock, that data is included in this report.

Spring Tritica	le			Yield as %	of AC U	ltima	
	Daws	on Creek	Fort St. J	ohn	В.	C. Peace	
	2013 Yield	2008-2013	2013 Yield	2008-2013	2013	2008-2013	
Variety	bu / % acre che	of Avg. Stn. ck (%) Yrs.	bu / % of acre check	Avg. Stn. (%) Yrs.	Avg. (%)	Avg. Stn. (%) Yrs.	
AC Ultima	154 c 1	00 100 [6]	164 c 100	100 [6]	100	100 [12]	
Brevis	172 a 1	12 110 [3]	181 a 110	108 [3]	111	109 [6]	
Bumper	159 b 1	03 105 [5]	173 b 106	104 [5]	104	105 [10]	
Sunray	152 c 9	8 102 [4]	161 c 98	106 [4]	98	104 [8]	
Taza	153 c 9	9 103 [4]	162 c 99	100 [4]	99	102 [8]	
LSD (P=	=.05) = 4.83		6.40				
CV value	(%) = 1.99		2.47				

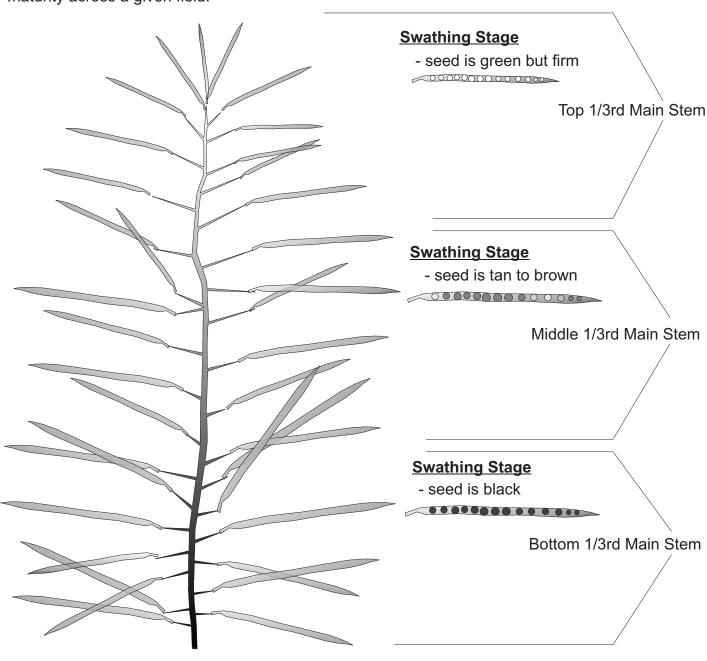

Means followed by the same letter do not significantly differ (P=.05, LSD)


AC Ultima - check variety


■ Protected by Plant Breeders' Rights

	VG= very good, G = good, F = fair, P = poor, VP = very poor, XX = insufficient d
Spring Triticale	Variety Descriptions

Spring Triticale		Variety Descriptions									
	. •							Agde			
	BC Pe	ace Averag	ges 2008-20	13			Res	sistano	ce to:		=
Variety	Maturity as days +/- check	Height (cm)	Bushel Weight (lbs/bus)	TKW (g / 1000)	Lodging	Shatter	Sprouting	Stripe Rust	Common Bunt FHB	Ergot	Distributor
AC Ultima Brevis	0.0 4.6	92 99	58 61	44 45	G G	G G	F F	G G	VG F VG P	P P	FP Genetics Wagon Wheel Seed Corp
Bumper Sunray	2.7 2.4	88 95	60 58	45 44	VG VG	G G	F F	G G	VG P VG P	XX G	SeCan SeedNet
■ Taza	2.4	104	58	46	G	G	F	G	VG VP	F	Solick Seeds


Average maturity for AC Ultima is 120 days for 2013

^{*} first year tested, very limited data available Δ denotes materials not registered

Definition of Canola Maturity Used In This Report

Please check with the *Canola Council of Canada* for complete definition of "swathing maturity". It is this "ready for swathing" time period that is used here to describe "maturity".

It is very important to split pods and check the seed inside as outer pod colour does not reflect the true maturity of the plant. Often the outer pod colour can still be green while seed inside has turned to black. Other times the pod colour could be pale yellow while green seed is within. One field inspection is not enough, one must visit a particular field several times to catch a progression in maturity so as not to miss the safe swathing period. Cool wet weather periods can slow or even temporarily halt the progression of maturity, especially prior to swathing. Several portions of the same field per variety must be checked as well because often minor field variations can change maturity across a given field.

2013 Crop Pest Status in the BC Peace Region

Clubroot of canola: 2013 saw an expansion of the number of infected fields in Alberta and Saskatchewan. So far clubroot has NOT been found in the BC Peace. For an informative video on how the infection works watch http://archive.canola-council.org/clubroot/news list.aspx

Although progress is being made in breeding varieties with some resistance to the disease, it is still far better to not have the organism in the soil in the region. Clubroot is a canola disease that could seriously reduce the ability of BC Peace region farms to grow the crop. The distribution of infested fields continues to expand from the Edmonton area. The map of county status as of Nov 2013 can be seen at the following link http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/prm14661 Club root could easily be transferred from there to here with a little bit of soil. It may be a good idea for you as a landowner having energy or construction equipment visiting (perhaps for pipeline work), to get an agreement that the equipment be cleaned prior to it coming on to your property. Check out the problem on the Internet: Alberta Clubroot Management Plan http://archive.canola-council.org/clubroot/control_clubroot.aspx#prevent. Also see links at the bottom of that document to: a disease fact sheet, Best Management Practices and an equipment cleaning protocol developed to disinfect machinery and equipment to prevent the spread of clubroot.

Sclerotinia: 2013 saw an increase in sclerotinia presence in the Peace, producers growing canola on canola should be extra alert with crop monitoring in 2014 if it is another wet year.

Wheat Midge: The wheat midge forecast for 2014 indicates a large increase for midge risk in the Eastern Peace River area (http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/prm14667); this could have some implications for the BC Peace too. Producers should pay attention to midge downgrading in their wheat samples and use this as a further indication of midge risk in their fields. Individual fields throughout Alberta may still have economic levels of midge. Each producer also needs to assess their risk based on indicators specific to their farm.

Aster yellows: Canola plants with misshapen "bladder" pods and reduced seeds, showed up in the BC Peace this year. The disease is spread by leafhoppers, which may have survived a milder winter or been blown in to the area by spring winds. This should be something to consider in future. http://www.canolawatch.org/2012/11/07/aster-yellows-qa/

It is worth knowing the pest players and risks. Further information is available from agriculture service suppliers (id. booklets), and on websites such as Canola Council's "canola watch" http://www.canolawatch.org/#sign-up-inner.

Julie Robinson, Agrologist, BC Ministry of Agriculture Fort St John, BC (250) 787-3241 julie.p.robinson@gov.bc.ca

CANOLA

Argentine Ca	nola		Yield as % of 45H21							
		Daws	son Cr	eek	Fort	St. Jo	hn	B.C	. Peac	е
				2013	2013	2008-	2013	2013	2008-	2013
		% of	Avg.	Stn.	% of	Avg.	Stn.	Avg.	Avg.	Stn.
Variety	Type	check	(%)	Yrs.	check	(%)	Yrs.	(%)	(%)	Yrs.
11N212R * ∆	Roundup Ready®	102	102	[1]	98	98	[1]	100	100	[2]
11N214R * ∆	Roundup Ready®	100	100	[1]	93	93	[1]	96	96	[2]
1918	Roundup Ready®	97	94	[2]	90	93	[2]	94	93	[4]
1990 *	Roundup Ready®	105	105	[1]	111	111	[1]	108	108	[2]
43E02	Roundup Ready®	93	98	[2]	93	96	[2]	93	97	[4]
45H21	Roundup Ready®	100	100	[8]	100	100	[10]	100	100	[18]
45H29 ***	Roundup Ready®	115	113	[5]	105	109	[5]	110	111	[10]
45H31	Roundup Ready®	111	106	[3]	111	110	[2]	111	108	[5]
45S52 ****	Roundup Ready®	112	106	[3]	107	110	[3]	110	108	[6]
<i>45</i> S54 *, ****	Roundup Ready®	119	119	[1]	110	110	[1]	115	115	[2]
5440	LibertyLink®	123	119	[5]	108	113	[5]	116	115	[10]
5525 CL	Clearfield®	101	102	[5]	94	97	[5]	97	99	[10]
5535 CL	Clearfield®	107	102	[3]	98	101	[3]	102	101	[6]
6040 RR	Roundup Ready®	101	100	[3]	97	96	[3]	99	98	[6]
6050 RR	Roundup Ready®	113	113	[2]	104	105	[2]	109	109	[4]
73-45 RR *	Roundup Ready®	111	111	[1]	108	108	[1]	110	110	[2]
74-44 BL *	Roundup Ready®	118	118	[1]	107	107	[1]	112	112	[2]
74-47 CR *, ***	Roundup Ready®	106	106	[1]	112	112	[1]	109	109	[2]
74-54 RR *, ***	Roundup Ready®	114	114	[1]	101	101	[1]	108	108	[2]
Café	Roundup Ready®	80	84	[3]	86	90	[4]	83	88	[7]
Fusion	Roundup Ready®	101	98	[3]	96	100	[3]	99	99	[6]
L120	LibertyLink®	119	114	[2]	111	110	[2]	115	112	[4]
L130	LibertyLink®	124	119	[3]	106	107	[3]	115	113	[6]
L150	LibertyLink®	117	84	[3]	116	115	[3]	116	117	[6]
L154 *	LibertyLink®	114	114	[1]	108	108	[1]	111	111	[2]
Peace	conventional	77	76	[4]	74	71	[4]	76	74	[8]
Rugby	Roundup Ready®	93	93	[3]	91	92	[4]	92	92	[7]
VR 9350 G	Roundup Ready®	98	94	[2]	96	97	[2]	97	95	[4]
VR 9559 G *	Roundup Ready®	111	111	[1]	106	106	[1]	108	108	[2]
VT 500 G	Roundup Ready®	100	98	[2]	106	102	[2]	103	100	[4]

45H21 - check variety

* caution, first year tested and/or very limited data available Δ = not currently registered

Roundup Ready® is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF

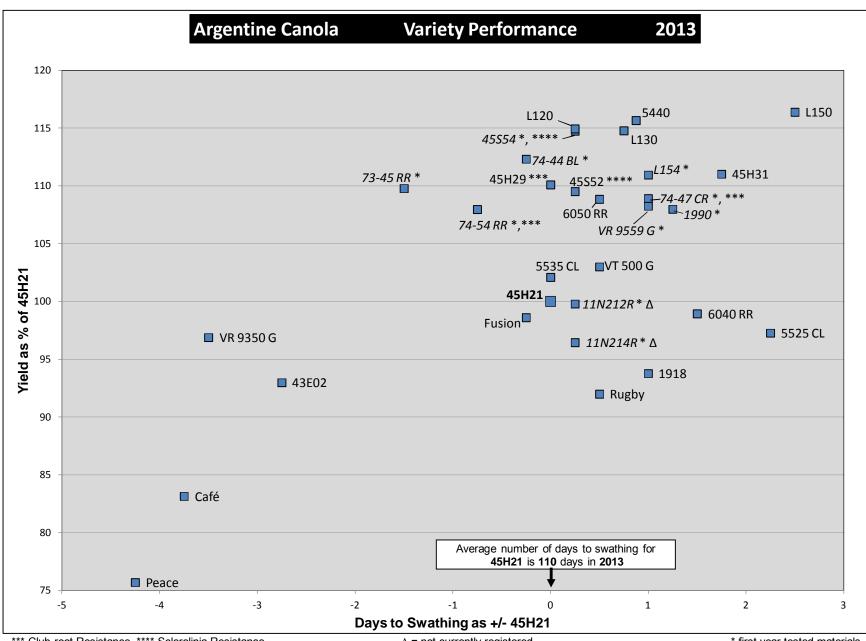
** specialty oil *** Club-root Resistance, **** Sclerotinia Resistance

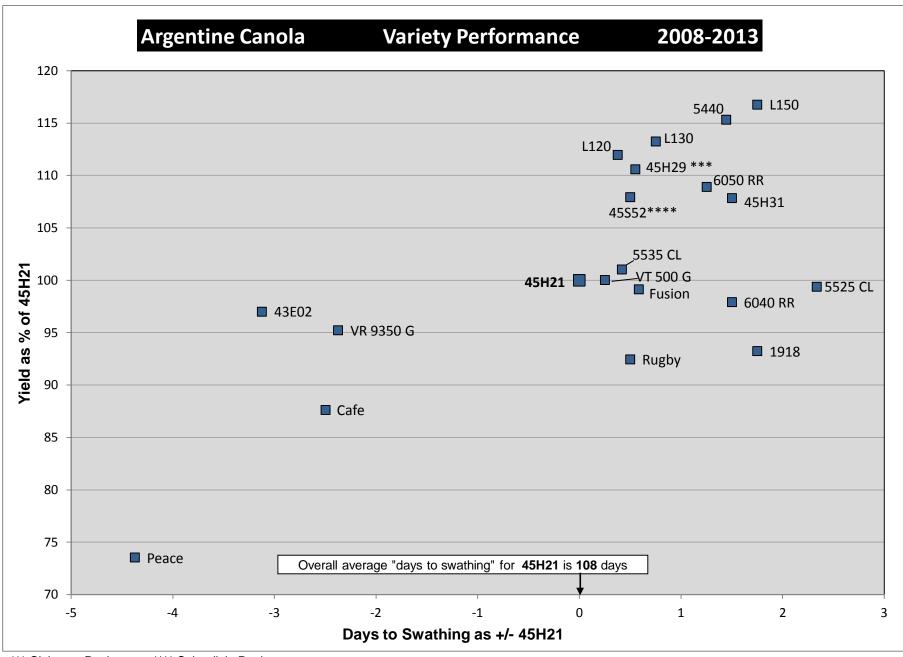
Note: "System Varieties" (Clearfield®, Roundup Ready®, or LibertyLink®) are grown together in with "conventional" Argentine varieties (actually as two napus trials per site with a common check) and thus conventional herbicides are used for weed control. (See page 6 for herbicides used). However, combining the two trials to produce the chart above means statistical analysis as combined LSD values cannot be shown for the entire group.

Coefficient of Variance (CV) values of the napus trials for 2013 were as follows: DC = 5.34, 4.45; FSJ = 7.51, 6.86 respectively.

Argentine (Canola	1				
Variety	Type	Herbicide Tolerance	Da Swa	Peace Avg. ys to athing ¹ - check 2008-2013	Blackleg Rating (Data from Var	r <u>ious</u> info.) Distributor
11N212R * ∆ 11N214R * ∆ 1918 1990 * 43E02 45H21 45H29 *** 45H31 45S52 **** 45S54 *, ****	HYB HYB OP HYB HYB HYB HYB HYB HYB	Roundup Ready® LibertyLink®	0.3 0.3 1.0 1.3 -2.8 0.0 0.0 1.8 0.3 0.3	0.3 0.3 1.8 1.3 -3.1 0.0 0.6 1.5 0.5 0.3 1.4	- MR R MR MR R R R MR R	Pioneer Hi-Bred Pioneer Hi-Bred Canterra Seeds Canterra Seeds Pioneer Hi-Bred Bayer CropScience
5525 CL 5535 CL 6040 RR 6050 RR 73-45 RR * 74-44 BL * 74-47 CR *, ***	HYB HYB HYB HYB HYB HYB	Clearfield® Clearfield® Roundup Ready® Roundup Ready® Roundup Ready® Roundup Ready®	2.3 0.0 1.5 0.5 -1.5 -0.3 1.0	2.3 0.4 1.5 1.3 -1.5 -0.3	R R R R R R	Brett Young Brett Young Brett Young Brett Young Dekalb Dekalb Dekalb
74-47 CR , 74-54 RR *, *** Café Fusion L120 L130 L150	HYB OP HYB HYB HYB HYB	Roundup Ready® Roundup Ready® Roundup Ready® Roundup Ready® LibertyLink® LibertyLink®	-0.8 -3.8 -0.3 0.3 0.8 2.5	0.8 -2.5 0.6 0.4 0.8 1.8	R R R R R R	Dekalb Dekalb SeCan SeCan Bayer CropScience Bayer CropScience Bayer CropScience
L150 L154 * ■ Peace ■ Rugby VR 9350 G VR 9559 G * VT 500 G	HYB OP OP HYB HYB	LibertyLink® LibertyLink® conventional Roundup Ready® Roundup Ready® Roundup Ready® Roundup Ready®	1.0 -4.3 0.5 -3.5 1.0 0.5	1.8 1.0 -4.4 0.5 -2.4 1.0 0.3	R R R MR MR R	Bayer CropScience Bayer CropScience Crop Production Services SeCan Crop Production Services Crop Production Services Crop Production Services

[■] Protection by Plant Breeders' Rights


Roundup Ready® is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF


Average 'days to swathing' for **45H21** is **110** days for **2013** Overall average 'days to swathing' for **45H21** is **108** days for **2008-2013**

R = Resistant, MR = Moderately Resistant, MS = Moderately Susceptible OP = open pollinated, SYN = synthetic, HYB = hybrid

 1 For full description of "Days to swathing" see page 23. Δ = not currently registered ** specialty oil *** Club-root Resistance **** Sclerotinia Resistance

^{*} caution, first year tested and/or very limited data.

*** Club-root Resistance, **** Sclerolinia Resistance

CANOLA

Warning: data presented below is composed from two sites, one year only.

Please refer to www.CanolaPerformanceTrials.ca for further short-season information involving other CPT site results.

Canola P	erforr	nance Trial	l (CPT)			B.C. F	Peace	Sites	2013
			Dawson	Creek	Fort St	. John	B.C.	Peace	
			201	3	20	13	201	3 Avg.	
		Herbicide	YIELD	Maturity	YIELD	Maturity	YIELD	Maturity	
Variety	Type	Tolerance	bu/ac	Days to	bu/ac	Days to	bu/ac	Days to	Distributor
Clearfield® herbiced 5525 CL	le tolerant s HYB	system Clearfield®	91 abc	115.6	78 b-f	109.0	84	112	Brett Young
VR 9560 CL							91		
VR 9560 CL	HYB	Clearfield®	93 abc	116.4	89 abc	109.4	91	113	Crop Production Service
_ibertyLink® herbic	ede toleran	t svstem							
5440	HYB	LibertyLink®	97 ab	114.6	91 ab	108.0	94	111	Bayer CropScience
1CN0181 ∆	HYB	LibertyLink®	98 a	115.4	96 a	109.4	97	112	Bayer CropScience
1CN0053 ∆	HYB	LibertyLink®	93 abc	115.9	80 b-f	108.9	87	112	Bayer CropScience
L130	HYB	LibertyLink®	95 ab	114.6	86 a-e	107.9	90	111	Bayer CropScience
L154	HYB	LibertyLink®	95 abc	115.6	86 a-d	108.4	90	112	Bayer CropScience
L159	HYB	LibertyLink®	90 abc	115.6	91 ab	108.4	91	112	Bayer CropScience
Roundup Ready® h		lerant system							
73-45 RR	HYB	Roundup Ready®	92 abc	115.5	79 b-f	107.5	86	112	Dekalb
6060 RR	HYB	Roundup Ready®	81 abc	116.5	75 b-f	108.1	78	112	Brett Young
6050 RR	HYB	Roundup Ready®	84 abc	115.5	68 def	108.3	76	112	Brett Young
11DL30103 ∆	HYB	Roundup Ready®	92 abc		72 c-f	108.5	82	112	Brett Young
1990	HYB	Roundup Ready®	88 abc	115.5	82 a-f	108.4	85	112	Canterra Seeds
V12-1**	HYB	Roundup Ready®	94 abc		81 b-f	109.4	87	113	Cargill Specialty Oil
V12-2**	HYB	Roundup Ready®	85 abc		68 ef	109.0	76	113	Cargill Specialty Oil
09H7757 ∆	HYB	Roundup Ready®	87 abc	116.8	74 b-f	109.1	80	113	Cargill Specialty Oil
DL30109 ∆	HYB	Roundup Ready®	77 c	115.6	67 f	108.0	72	112	DL Seeds
DL30509 ∆	HYB	Roundup Ready®	84 abc		73 c-f	109.5	78	113	DL Seeds
73-75 RR	HYB	Roundup Ready®	79 bc	115.1	74 b-f	106.8	77	111	Dekalb
74-44 BL	HYB	Roundup Ready®	93 abc		75 b-f	107.4	84	111	Dekalb
74-47 CR ***	HYB	Roundup Ready®	94 abc		74 b-f	108.6	84	112	Dekalb
74-54 RR ***	HYB	Roundup Ready®	86 abc		76 b-f	108.1	81	112	Dekalb
SY4114	HYB	Roundup Ready®	81 abc		74 b-f	107.1	78	110	Syngenta
SY4135	HYB	Roundup Ready®	92 abc		77 b-f	108.4	85	112	Syngenta
VR 9562 GC	HYB	Roundup Ready®	93 abc		77 b-f	108.0	85	111	Crop Production Service
VT 530 G	HYB	Roundup Ready®	90 abc		71 c-f	107.9	80	112	Crop Production Service
73-15 RR	HYB	Roundup Ready®	87 abc	113.5	72 c-f	105.9	80	110	Dekalb
SD (P=.05)			9.90		9.86				
Standard Deviation			7.00		6.97				
CV			7.84		8.93				

■ Protection by Plant Breeders' Rights

 Δ not currently registered

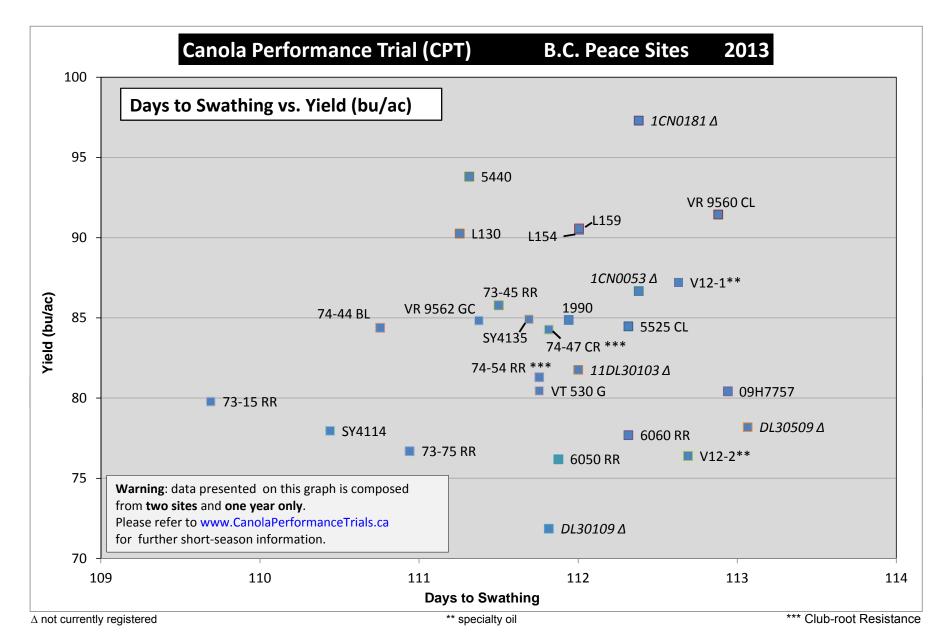
situation

Roundup Ready® is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF

OP = open pollinated, SYN = synthetic, HYB = hybrid
Caution, one year data so very limited data

** specialty oil

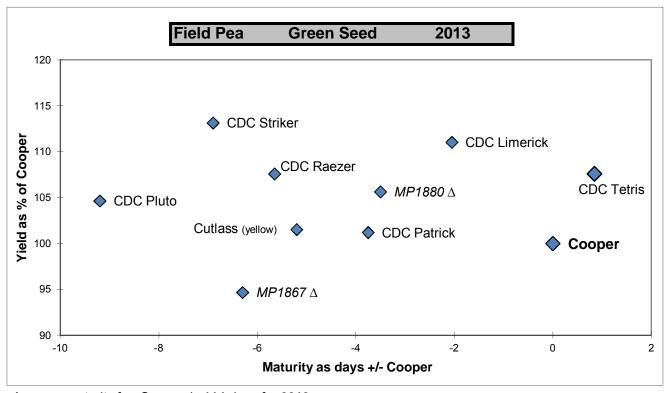
*** Club-root Resistance


The following description of the CPT trials was provided by: seed.ab.ca publication. Italics are minor changes by BCGPA to reflect current

Canola Performance Trials are coordinated by the Canola Council of Canada Note: The CPT system is not affiliated with provincial regional variety testing.

This canola variety table summarizes the performance of selected registered canola varieties available for planting in spring 2013, plus in 2013 a few unregistered lines that were supported for registration. The post-registration Canola Performance Trial (CPT) testing starting back in 2012 was designed to be more reflective of field practices. The appropriate herbicide products have been applied to the matching herbicide tolerant (HT) varieties in small plots, with no 'check' variety assigned. Individual location data for the small plot trials are available at www.Canola/PerformanceTrials.ca, but the best performance indicator is to compare varieties over multiple sites. This also includes comparing performance of small plot trials with field scale trial results. The CPT information on-line provides both data sources which have been reviewed through a protocol and data audit process. This process assures that data was collected and trials conducted in a scientific manner and that comparisons are unbiased. With the changes in trial management and data source collection, data from 2013, 2012, and 2011 are not considered comparable to previous trials.

Detailed notes on other agronomic attributes of varieties and trials management are at www.CanolaPerformanceTrials.ca


FIELD PEA

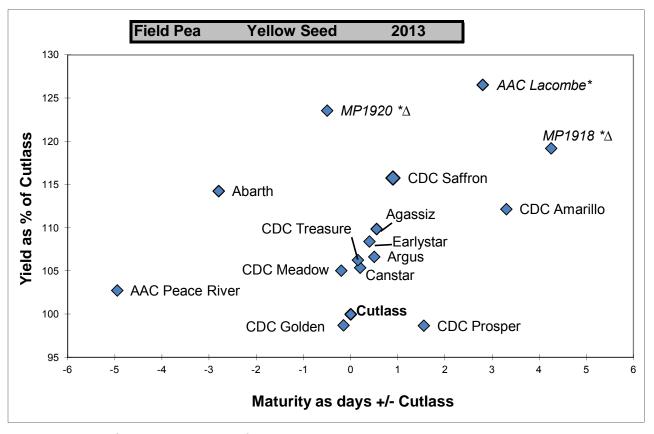
Field Pea	(Green	Seed')			Yield as % of Cooper								
	**Designated	Da	wson Cr	reek			F	ort St. Jo	ohn	B.C. Peac			е	
	Powdery	2013 Yi	ield	2008-2	2013	20	13 `	Yield	2008-2	2013	2013	2008-	-2013	
Variety	Mildew	bu /	% of	Avg	. Stn.	bu /		% of	Avg.	Stn.	Avg.	Avg.	Stn.	
	Resistant	acre	check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.	
CDC Limerick	VG	92 ab	125	97	[2]	112	а	97	96	[2]	111	96	[4]	
CDC Patrick	VG	83 bc	112	98	[6]	104	а	90	100	[6]	101	99	[12]	
CDC Pluto	VG	88 abc	119	107	[3]	104	а	90	96	[3]	105	101	[6]	
CDC Raezer	VG	89 abc	121	106	[3]	109	а	95	92	[3]	108	99	[6]	
CDC Striker	Р	97 a	132	94	[6]	109	а	95	90	[6]	113	92	[12]	
CDC Tetris	VG	89 abc	121	106	[3]	109	а	94	97	[3]	108	101	[6]	
Cooper	VG	74 d	100	100	[6]	115	а	100	100	[6]	100	100	[12]	
Cutlass	VG	81 c	109	101	[6]	108	а	94	104	[6]	102	103	[12]	
MP1867 ∆	VG	83 bc	112	97	[3]	89	b	77	87	[3]	95	92	[6]	
MP1880 ∆	VG	84 bc	114	109	[2]	112	а	97	96	[2]	106	103	[4]	
LSD (P=.05)) =	6.60				7.13	-							
CV value (%)) =	5.30				4.59								

Means followed by the same letter do not significantly differ (P=.05, LSD)

 Δ denotes materials not registered

Cooper - check variety

Average maturity for **Cooper** is **114** days for **2013**


^{**}Powdery Mildew resistance **VG**=Very Good, **F**=Fair, **P**=Poor (data: Alberta Agdex 100/32)

^{*} first year tested, very limited data available

Field Pea (Yellow	Se	ed)					Yiel	d as '	% of	Cutlas	ss	
	**Designated		Da	wson Cı	eek			F	ort St. Jo	hn		B.C. Peace		
	Powdery	20	13 Y	ield	2008-	2013	2	013 Y	ïeld	2008-2	2013	2013	2008-	2013
Variety	Mildew	bu /		% of	Avg.	Stn.	bu /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
	Resistant	acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
AAC Lacombe *	VG	106	а	138	138	[1]	122	ab	115	115	[1]	127	127	[2]
AAC Peace River	VG	78	gh	102	100	[4]	110	cde	104	111	[4]	103	105	[8]
Abarth	VG	88	def	115	110	[2]	120	ab	114	104	[2]	114	107	[4]
Agassiz	VG	89	de	116	104	[5]	109	cde	103	105	[6]	110	105	[11]
Argus	VG	84	efg	110	100	[4]	110	cde	104	108	[4]	107	104	[8]
Canstar	VG	82	fg	106	103	[5]	110	cde	104	106	[6]	105	105	[11]
CDC Amarillo	VG	84	efg	110	108	[2]	121	ab	115	108	[2]	112	108	[4]
CDC Golden	VG	74	h	96	95	[5]	108	de	102	96	[6]	99	95	[11]
CDC Meadow	VG	84	efg	109	102	[5]	107	е	101	102	[6]	105	102	[11]
CDC Prosper	VG	81	fg	106	100	[5]	97	f	92	96	[6]	99	98	[11]
CDC Saffron	VG	92	cd	120	103	[3]	118	bcd	111	103	[3]	116	103	[6]
CDC Treasure	VG	81	fg	106	99	[5]	113	b-e	107	101	[6]	106	100	[11]
Cutlass	VG	77	gh	100	100	[5]	106	е	100	100	[6]	100	100	[11]
Earlystar	VG	81	g	105	103	[2]	119	bc	112	107	[2]	108	105	[4]
MP1918 *∆	VG	101	b	131	131	[1]	114	b-e	108	108	[1]	119	119	[2]
MP1920 *∆	VG	96	bc	125	125	[1]	129	а	122	122	[1]	124	124	[2]
LSD (P=.05) CV value (%)		4.73 3.84					6.71 4.15		-					

Means followed by the same letter do not significantly differ (P=.05, LSD)

Cutlass - check variety

Average maturity for Cutlass is 107 days for 2013

^{**}Powdery Mildew resistance: VG=Very Good, F=Fair, P=Poor (data: Alberta Agdex 100/32)

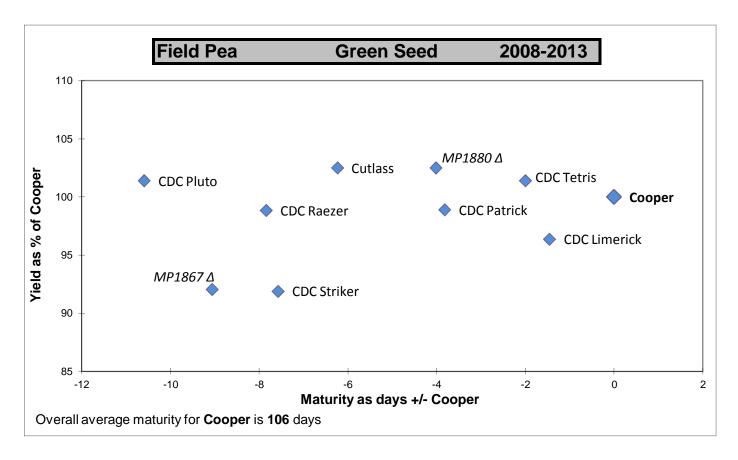
 $[\]Delta$ denotes materials not registered

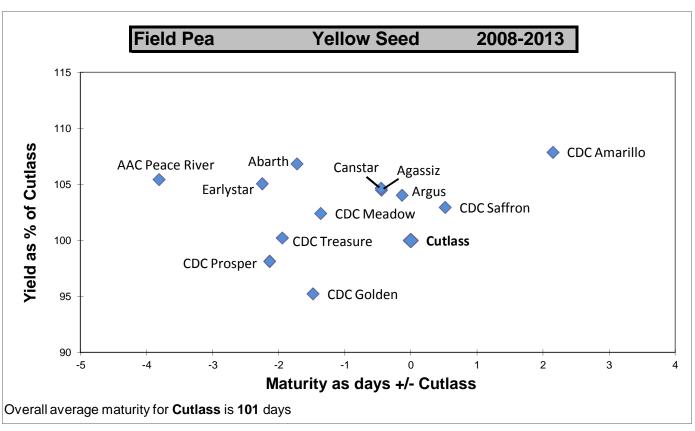
^{*} first year tested, very limited data available

Field Pea					Variety Descriptions
	BC P	eace Aver	ages 2008-	2013	
	Maturity	Vine			
	as days	Length	Lodging	TKW	
Variety	+/- check	cm	1-9**	g/1000	Distributor
		Yel	low Seed		
AAC Lacombe *	2.8	106	1	236	Seednet Inc.
AAC Peace River	-3.8	80	1	219	Hadland Seed Farms
Abarth	-1.7	81	1	252	FP Genetics
Agassiz	-0.4	93	3	232	Canterra Seeds
■ Argus	-0.1	77	1	229	SeCan
Canstar	-0.5	73	3	255	Canseed (Canada) Ltd.
CDC Amarillo	2.2	85	1	215	Sask Pulse Growers
CDC Golden	-1.5	71	2	220	Sask Pulse Growers
CDC Meadow	-1.4	77	3	214	Sask Pulse Growers
CDC Prosper	-2.1	66	2	150	Sask Pulse Growers
CDC Saffron	0.5	81	1	251	Sask Pulse Growers
CDC Treasure	-1.9	78	2	216	Sask Pulse Growers
Cutlass	0.0	68	3	228	Sask Pulse Growers
Earlystar	-2.3	107	1	212	Canterra Seeds
MP1918 *∆	4.3	108	1	201	AAFC Lacombe
MP1920 *∆	-0.5	105	1	215	AAFC Lacombe
		Gre	een Seed		
CDC Limerick	-1.5	81	1	210	Sask Pulse Growers
CDC Patrick	-3.8	74	2	193	Sask Pulse Growers
CDC Pluto	-10.6	86	1	177	Sask Pulse Growers
CDC Raezer	-7.8	92	1	235	Sask Pulse Growers
CDC Striker	-7.6	69	2	247	Sask Pulse Growers
CDC Tetris	-2.0	95	1	224	Sask Pulse Growers
Cooper	0.0	67	2	285	Canterra Seeds
Cutlass	-6.2	66	3	228	Sask Pulse Growers
MP1867 ∆	-9.1	86	1	218	AAFC-Lacombe
MP1880 ∆	-4.0	81	1	263	AAFC-Lacombe

Some varieties may not be suitable for the human consumption market. Producers should contact their intended buyer/processor before seeding to ensure the marketability of specific varieties. Many green seeded varieties will bleach if exposed to periods of wetting and drying in the field near harvest. Uncleaned and damaged seed is considered to be low quality and is only suitable for the feed market. The amount of seed coat damage suffered during harvest varies with variety. Splitting may be reduced if peas are harvested tough (20% moisture) & dried slowly in an aeration bin.

Lodging data is becoming important criteria when selecting peas for our area, as peas still standing at harvest stand a better chance of escaping excretia contamination from large wildlife, especially if harvested as direct-cut. Note that due to variability of lodging, numbers averaged tend to be lower than can occur in a given year.


Overall average maturity for Cutlass is 101 days, and 106 days for Cooper


■ Protected by Plant Breeders' Rights

 Δ denotes materials not registered

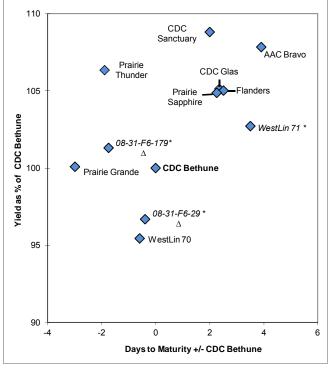
* first year tested, very limited data available

** 1 - 9 scale; 1 = none, 9 = 100% affected

FLAX

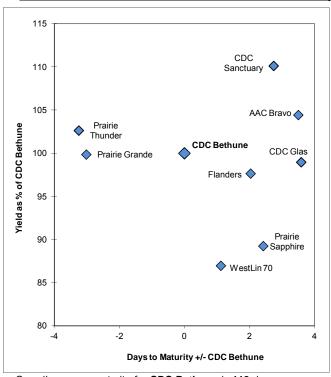
Fields of flax have been successfully grown in our region for many years. However ,growing flax in the B.C. Peace River region is still a risky venture. Large acreage should be discouraged until further breeding programs have resulted in earlier maturing varieties. The B.C. Grain Producers Association is looking into the development of earlier maturing varieties as well as frost-tolerant lines that can be planted earlier than is traditional. For this reason this information is being provided here. It has become apparent that it is **very important to plant flax as early as possible** (as advised by Dr. Paul Dribnenki, flax breeder). This seems to prevent flower abortion in heat and reduces reflowering in August. In the end this helps to deliver a more consistent and earlier maturation of the seed.

Flax	Yield as % of CDC Bethune														
	Dawson Creek Fort St. John						В.0	C. Peac	е		Variety Descriptions				
	20	13 Yie	ld	2008-2	2013	2013	Yield	2008-2	2013	2013	2008-2	2013	Maturity	Height	
Variety	bu /		% of	Avg.	stn	bu /	% of	Avg.	stn	Avg.	Avg.	stn	days +/-		
	acre	C	heck	(%)	yrs	acre	Check	(%)	yrs	(%)	(%)	yrs	check	(cm)	Distributor
08-31-F6-179 *∆	50	cd	99	99	[1]	53 ab	104	104	[1]	101	101	[2]	-1.8	59	Crop Production Services
08-31-F6-29 *∆	49	d	97	97	[1]	50 b	97	97	[1]	97	97	[2]	-0.4	68	Crop Production Services
AAC Bravo	55	abc	108	107	[3]	55 at	108	102	[3]	108	104	[6]	3.5	64	FP Genetics
CDC Bethune	51	bcd	100	100	[6]	51 at	100	100	[5]	100	100	[11]	0.0	56	SeCan
CDC Glas	55	abc	108	100	[2]	53 at	103	97	[2]	105	99	[4]	3.6	61	SeCan
CDC Sanctuary	53	a-d	104	107	[5]	58 a	113	113	[4]	109	110	[9]	2.7	62	SeCan
Flanders	55	abc	108	98	[6]	52 at	102	97	[5]	105	98	[11]	2.0	52	SeCan
Prairie Grande	51	bcd	101	98	[6]	51 ab	99	102	[5]	100	100	[11]	-3.0	52	SeCan
Prairie Sapphire	55	ab	109	93	[4]	52 at	101	86	[3]	105	89	[7]	2.4	63	Alliance Seed Corp.
Prairie Thunder	57	а	112	101	[6]	52 at	101	104	[5]	106	103	[11]	-3.2	53	Canterra Seeds
WestLin 70	49	d	97	94	[2]	48 b	94	80	[2]	95	87	[4]	1.1	64	Crop Production Services
WestLin 71 *	52	bcd	103	103	[1]	53 at	103	103	[1]	103	103	[2]	3.5	67	Crop Production Services
LSD (P=.05) =	3.	07	-			4.24	_								
CV value (%) =	4.	05				5.61									


Means followed by the same letter do not significantly differ (P=.05, LSD)

CDC Bethune - check variety

- Protected by Plant Breeders' Rights
- Δ denotes materials not registered


* first year tested, very limited data available

Flax Regional Variety Performance 2013

Average maturity for CDC Bethune is 110 days for 2013

Flax Regional Variety Performance 2008-2013

Overall average maturity for CDC Bethune is 112 days.

Summary of all 2013 Research Trials

Data used directly for the production of this report...

Regional Variety Trials	Site	Varieties	Replicates	Plots	Source
Regional 2 Row Barley *	DC	19	4	76	Alex Fedko - AAFRD-CDC North, Edmonton
Regional 6 Row Barley (& hulless) *	DC	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Oats *	DC	12	4	48	Alex Fedko - AAFRD-CDC North, Edmonton
Regional CWRS Wheat (HRSW) *	DC	31	4	124	Alex Fedko - AAFRD-CDC North, Edmonton
Regional GP Wheat(General Purp./CPS/SWS) *	DC	19	4	76	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Triticale *	DC	5	4	20	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Durum Wheat	DC	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Prairie Wide Napus CPT (Herbicide Systems)	DC	27	4		Rale Gjuric - Haplotech Inc Winnipeg
BCGPA Napus NS1 comparison trial ***	DC	17	4	68	BCGPA - Clair Langlois
BCGPA Napus NS2 comparison trial ***	DC	18	4	72	BCGPA - Clair Langlois
Regional Flax *	DC	12	4	48	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Green Field Pea *	DC	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Yellow Field Pea *	DC	16	4	64	Alex Fedko - AAFRD-CDC North, Edmonton
Collaborative Lentil Trial (AB/BC Peace Initiative)	DC	8	4	32	SARDA, MARA, BRRG, BCGPA collaboration
Regional 2 Row Barley *	FSJ	19	4	76	Alex Fedko - AAFRD-CDC North, Edmonton
Regional 6 Row Barley (& hulless) *	FSJ	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Oats *	FSJ	12	4	48	Alex Fedko - AAFRD-CDC North, Edmonton
Regional CWRS Wheat (HRSW) *	FSJ	31	4		Alex Fedko - AAFRD-CDC North, Edmonton
Regional GP Wheat(General Purp./CPS/SWS) *	FSJ	19	4	76	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Triticale *	FSJ	5	4	20	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Durum Wheat	FSJ	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Prairie Wide Napus CPT (Herbicide Systems)	FSJ	27	4	108	Rale Gjuric - Haplotech Inc Winnipeg
BCGPA Napus NS1 comparison trial ***	FSJ	17	4	68	BCGPA - Clair Langlois
BCGPA Napus NS2 comparison trial ***	FSJ	18	4	72	BCGPA - Clair Langlois
Regional Flax *	FSJ	12	4	48	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Green Field Pea *	FSJ	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Yellow Field Pea *	FSJ	16	4	64	Alex Fedko - AAFRD-CDC North, Edmonton
Collaborative Lentil Trial (AB/BC Peace Initiative)	FSJ	8	4	32	SARDA, MARA, BRRG, BCGPA collaboration

Data used for plant breeding and variety registration support, thus support for future new materials for future reports...

Varietal Development	Site	Varieties	Replicates	Plots	Source
Barley					
Western 2-Row Co-op Barley	DC	36	3	108	Dr. Tom Zatorski - U of S Malt B Prgm
Western 6-row Co-op Barley	DC	16	3	48	Dr. Ana Badea - Ag Canada - Brandon
B-Y5 Barley Co-op - Grain Yields **	DC	25	3	75	Pat Juskiw/J. Nyachiro - AAFCDC Lacombe
Viterra - 2-Row Barley Marketing **	DC	20	3	60	Jim Anderson - CPS,Calgary
Beans					
Dry Bean Variety Adaptation Trial	DC	9	4	36	Dr. Parthiba Balasubramanian - AAFC Lethr.
Dry Bean Variety Adaptation Trial	FSJ	9	4	36	Dr. Parthiba Balasubramanian - AAFC Lethr.
Camelina					
Ag Canada - Camelina - Multi - Species **	DC	28	4	112	Dr. Christina Eynck, AAFC-Saskatoon
Ag Canada - Camelina - Multi - Species **	FSJ	28	4	112	Dr. Christina Eynck, AAFC-Saskatoon
Canola					
CPS Napus Herbicide Systems CPC CL/LL **	DC	12	3	36	Tim Ferguson / Daryl Rex - CPS, Saskatoon
CPS Napus Herbicide Systems CPC RR **	DC	25	3	75	Tim Ferguson / Daryl Rex - CPS, Saskatoon
CPS Napus Short-Season RR **	DC	5	3	15	Tim Ferguson / Daryl Rex - CPS, Saskatoon
CPS Napus Short-Season RR **	FSJ	5	3	15	Tim Ferguson / Daryl Rex - CPS, Saskatoon
DL-Seed Napus Trial 301 **	DC	25	3	75	Dr. Kevin McCallum - DL Seeds, MB
DL-Seed Napus Trial 900 **	DC	25	3	75	Dr. Kevin McCallum - DL Seeds, MB
PIONEER - Napus CCNSR-351(early season) **	DC	17	4	68	Jason Nordstrom, Pioneer Hi-Bred, Edmonton
PIONEER - Napus CCNSR-351(early season) **	FSJ	17	4	68	Jason Nordstrom, Pioneer Hi-Bred, Edmonton
Syngenta-Peace-Learning Center	DC	6	1	6	Justin Bouvier - Syngenta Canada Inc.
WCC/RRC Napus NS1 Co-op **	DC	26	3	78	Raymond Gadoua - Canola Council
WCC/RRC Napus NS2 Co-op **	DC	26	3	78	Raymond Gadoua - Canola Council

^{*} some entries sourced & entered by BCGPA

^{**} fee-for-service research

^{***} all entries sourced by BCGPA or their inclusion requested by local agri-business

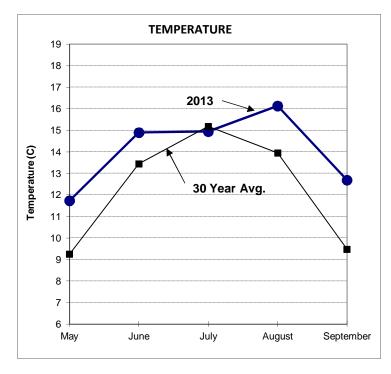
Varietal Development continued	Site	Varieties	Replicates	Plots	Source
Flax					
Northern Flax Co-op	DC	36	3	108	Michelle Beaith, CPS, Saskatoon, SK
Northern Flax Co-op	FSJ	36	3	108	Michelle Beaith, CPS, Saskatoon, SK
Northern Flax CFET	DC	36	3	108	Dr. Scott Duguid - MRC Morden
Flax Northern Prelim	DC	36	3		Dr. Scott Duguid - MRC Morden
Flax - NorFlax-Prject - CCF13O01 DC	DC	25	3		Michelle Beaith, CPS, Saskatoon, SK
Flax - NorFlax-Prject - CCF13O02 DC	DC	25	3	75	Michelle Beaith, CPS, Saskatoon, SK
Flax - NorFlax-Prject - CCF13O03 DC	DC	25	3		Michelle Beaith, CPS, Saskatoon, SK
Flax - NorFlax-Prject - CCF13O04 DC	DC	25	3		Michelle Beaith, CPS, Saskatoon, SK
Flax - NorFlax-Prject - CCF13O05 DC	DC	25	3	75	Michelle Beaith, CPS, Saskatoon, SK
Oat					
Oat Private Co-op (Prelim-P) **	DC	240	1		Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Oat Co-op (BOAT) **	DC	42	3		Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Western Oat Co-op (WCORT)	DC	36	3		Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Oat Organic Co-op (BORG) - hand weeded **	DC	25	3	75	Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Pea					
"Peace Field Pea Project" PYT22	FSJ	36	2	72	Dr. Dengjin Bing - AAFC Lacombe
"Peace Field Pea Project" PYT23	FSJ	36	2	72	Dr. Dengjin Bing - AAFC Lacombe
Field Pea - Short-Season - Co-op "C"	FSJ	16	3	48	Don Beauchesne - AAFC Lacombe
Triticale					
T-Y3A Triticale Grain Pre-Co-op	DC	25	3	75	Dr. Mazen Aljarrah - AAFC Lacombe
T-Y3B Triticale Grain Pre-Co-op	DC	25	3		Dr. Mazen Aljarrah - AAFC Lacombe
Triticale Registration Co-op Test	DC	20	4	80	Dr. Harpinder Randhawa - AAFC - Lethbridge
Wheat					
CPS Wheat CPS **	DC	12	3	36	Jim Anderson - CPS, Calgary
CPS Wheat HRSW **	DC	20	3	60	Jim Anderson - CPS, Calgary
Early Wheat Parkland A1 (3m plots) **	FSJ	56	2		Dr. Gavin Humphreys - AAFC Winnipeg
Early Wheat Parkland A2 (3m plots) **	FSJ	81	2	162	Dr. Gavin Humphreys - AAFC Winnipeg
Early Wheat Parkland A3 (3m plots) **	FSJ	25	3	75	Dr. Gavin Humphreys - AAFC Winnipeg
Early Wheat PR4F8 (3m plots) **	FSJ	200	1	200	Dr. Gavin Humphreys - AAFC Winnipeg
Parkland 'C' Wheat Co-op	DC	30	3	90	Alanna Olson - AAFC Beaverlodge
Parkland 'C' Wheat Co-op	FSJ	30	3	90	Alanna Olson - AAFC Beaverlodge
Syngenta-Peace-Learning Center	DC	7	1	7	Justin Bouvier - Syngenta Canada Inc.
Wheat-UofA -'GPAYT' Co-op **	DC	32	2	64	Dr. Dean Spaner - U of A, Edmonton, AB
Wheat-UofA- 'ORGAYT' Co-op **	DC	32	3	96	Dr. Dean Spaner - U of A, Edmonton, AB
Wheat-UofA-Parkland 'B' Private Co-op **	FSJ	25	3	75	Dr. Dean Spaner - U of A, Edmonton, AB
Wheat-UofA-'TGAYT' Co-op **	DC	15	4	60	Dr. Dean Spaner - U of A, Edmonton, AB
Agronomic Trials					
Bayer - Flea Beetle Control - Seed-Trt **	DC	11	4		Scott Henry - Bayer CropScience, Calgary
Bayer - Flea Beetle Control - Seed-Trt **	FSJ	11	4	44	Scott Henry - Bayer CropScience, Calgary
BASF - Flea Beetle Study **	DC	12	4		Ryan Nielson - BASF, Edmonton
BASF - Flea Beetle Study **	FSJ	12	4		Ryan Nielson - BASF, Edmonton
Cereal Rust Plots (individual plots)	DC	6	1		Tom Fetch - AAFC Winnipeg
Spring Wheat Seeding Rate Study	DC	25	4		BCGPA (Dr. O'Donovan input-AAFC Lacombe)
Spring Wheat Seeding Rate Study	FSJ	25	4	100	BCGPA (Dr. O'Donovan input-AAFC Lacombe)

^{**}fee-for-service research

Site:

FSJ = Vic Blanchette, Fort St. John, BC
DC = School District #59, (Hudson School Farm property), Dawson Creek, BC

Sources: **AAFRD**


AAFC ARECA

 Alberta Agriculture, Food and Rural Development
 Agriculture and Agri-Food Canada
 Agricultural Research and Extension Council of Alberta
 Morden Research Centre, Agriculture & Agrifood Canada, Morden, Manitoba
 University of Saskatchewan, Saskatoon, Saskatchewan
 British Columbia Grain Producers Association MRC

UofS

BCGPA

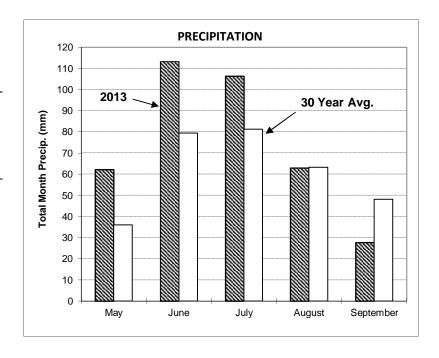
Dawson Creek Weather Information 2013

TEMPERATURE

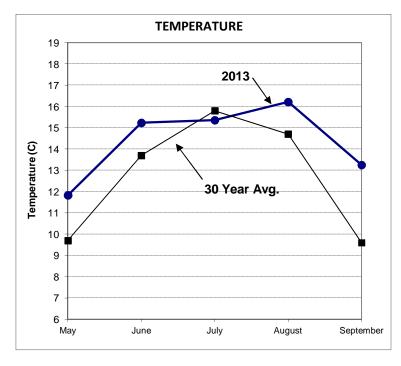
Month	Monthly Avg. Temp. (C)	Temp.* 30 year Avg. (C)
May	12	9
June	15	13
July	15	15
August	16	14
September	13	9

Frost Events: May 7 -4.38 September 26 -1.44 September 30 -2.66

Killing Frost (-2.2 C) Free Period: 146 May 7 - September 30


Accumulated Growing Degree Days: 2013: 1326 1994-2013 Average: 1177

* 30 year average DC from 1968-1997 Source: Environment CANADA


PRECIPITATION

Month	Monthly Precipitation (mm)	Precipitation * 30 year Avg. (mm)
May	62	36
June	113	79
July	106	81
August	63	63
September	28	48

Data is provided by an on site weather station maintained by the Canadian Wheat Board and the BC Grain Producers Association.

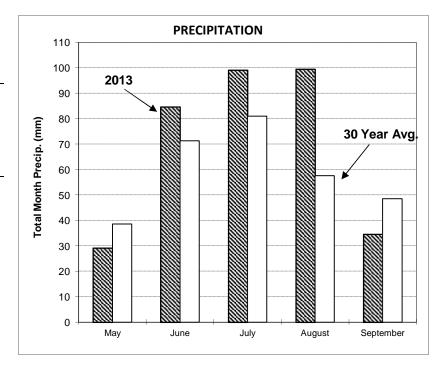
Fort St. John Weather Information 2013

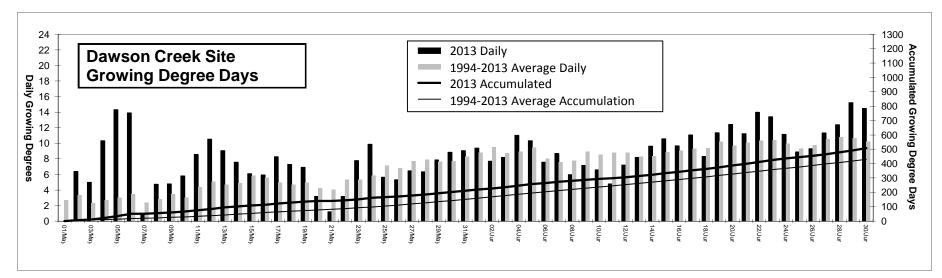
TEMPERATURE

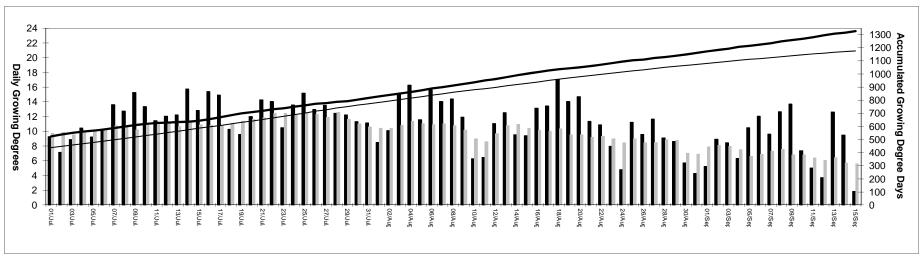
Month	Monthly Avg. Temp. (C)	Temp.* 30 year Avg. (C)
May June	12 15	10 14
July	15	16
August September	16 13	15 10

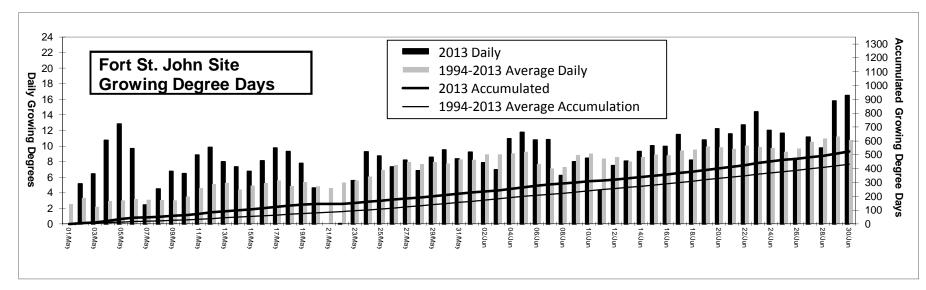
Frost Events: May 1 -7.57 September 26 -1.66 October 13 -2.85

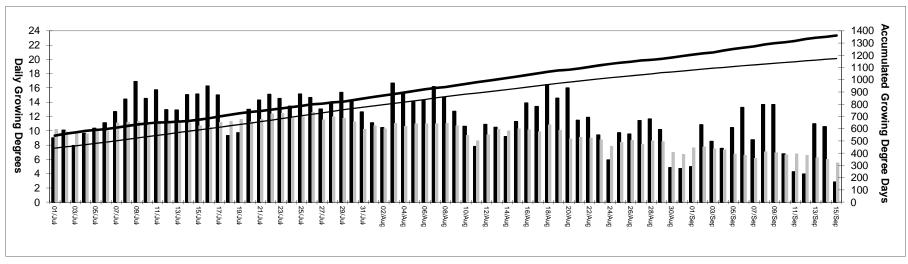
Killing Frost (-2.2 C) Free Period: 165 May 1 – October 13


Accumulated Growing Degree Days: 2013: 1363
1994-2013 Average: 1173


* 30 year average FSJ from 1968-1997 source: Environment CANADA


PRECIPITATION


Month	Monthly Precipitation (mm)	Precipitation * 30 year Avg. (mm)
May	29	39
June	85	71
July	99	81
August	100	58
September	35	49


Data is provided by an on site weather station maintained by the Canadian Wheat Board and the BC Grain Producers Association.

List of Certified Seed Distributors

Alliance Seed Corp.

www.allianceseed.com

Bayer CropScience Inc. Canada

#100, 3131-114 Ave. SE Calgary, AB T2Z 3X2 Toll-Free :1(888) 283-6847 Phone:(403)-723-7400

www.bayercropscience.ca

Brett - Young Seeds Ltd.

P.O. Box 99, St. Norbert Postal Station, Winnipeg, MB R3V 1L5 Toll-Free: 1(800) 665-5015

www.brettyoung.ca

Busch Agricultural Resources Inc. Canada

360 Main Street, Suite 2080 Winnipeg, Manitoba R3C 3Z3 Phone:(204)-927-3603

Canseed Ltd.

R.R. #1, Box 1155 Stettler, AB T0C 2L0 Phone: (403)-742-4091 Fax: (403)-742-0621

Canterra Seeds Ltd.

201-1475 Chevier Blvd. Winnipeg, MB R3T 1Y7 Phone: (204)-988-9750 Fax:(204) 487-7682 www.canterra.com

Cargill Ltd.

P.O. Box 5900 300-240 Graham Avenue Winnipeg, MB R3C 4C5 Phone:(204)-947-0141 Fax:(204)-947-6444 www.cargill.ca

Crop Production Services Canada Inc.

PO Box 770 Stn Mair Regina, Saskatchewan S4P 3A8 Toll-Free:1(855)-569-9444 Dawson Creek Phone:(250)-782-9264 Fort St.John Phone:(250)-785-3445 www.cpsagu.ca

DL Seeds

P.O. Box 2499 Morden, MB R6M 1C2 Phone: (204)-331-2361 Fax:(204)-325-8052 www.dlseeds.ca

FP Genetics

426 McDonald Street Regina, SK S4N 6E1 Toll Free: 1(877) 791-1045 Fax: 1(877) 791-1046

www.fpgenetics.ca

Hadland Seed Farm Ltd.

8161 253 Rd, Baldonnel BC, V0C 1C0 Phone: (250)-789-3646

Mastin Seeds

RR #1 Sundre, AB T0M 0X0 Phone:(403)-556-2609 Fax: (403)-507-2609 www.mastinseeds.com

Monsanto Canada Inc (DEKALB)

900 - 1 Research Road Winnipeg, MB R3T 6E3 Toll-Free:1(800) 667-4944 Phone: (204)-985-1000 www.monsanto.ca

Pioneer Hi-Bred Ltd. (DuPont)

P.O. Box 730, 7398 Queen's Line Chatham, ON N7M 5L1 Phone: (519)-352-6350 www.pioneer.com/canada

Richardson International

2800 One Lombard Place, Winnipeg, MB R3B 0X8 Toll Free:1-866-217-6211 Phone: (204)-934-5961 http://www.richardson.ca

Saskatchewan Pulse Growers

104 - 411 Downey Road Saskatoon, SK S7N 4L8 Phone: (306)-668-5556 Fax: (306)-668-5557 www.saskpulse.com

SeCan Association

400 - 300 Terry Fox drive Kanata, ON K2K 2E2 Toll-Free:1(800)-665-7333(Western Canada) www.secan.com

Seed Depot Corp.

P.O. Box 208 Pilot Mound, MB R0G 1P0 Phone: (204)-825-2000 www.seeddepot.ca

SeedNet Inc.

John Huvenaars Phone: (403) 725-2126 http://www.seednet.ca

Solick Seeds Ltd.

Po Box 97 Halkirk, AB T0C 1M0 Phone: (403)-884-2358 Fax: (403)-884-2360

Syngenta Seeds Canada Inc.

140 Research Lane Research Park Guelph, Ontario N1G 4Z3 Toll-Free:1(888)-368-4211 Phone:(519)-836-5665 www.syngenta.ca

T & L Seeds

P.O. Box 216 North Battleford, SK S9A 2Y

Wagon Wheel Seed Corp.

Box 229 Churchbridge, SK S0A 0M0 Phone: (306)-896-2236 Fax: (306)-896-2696 http://www.wagonwheelseeds.sk.ca

Western Ag Labs

#104 - 110 Research Drive Innovation Place Saskatoon, SK S7N 3R3 Toll Free: 1(877)-978-1777

Phone:1(360)-978-1777 Fax:1(360)-978-4140

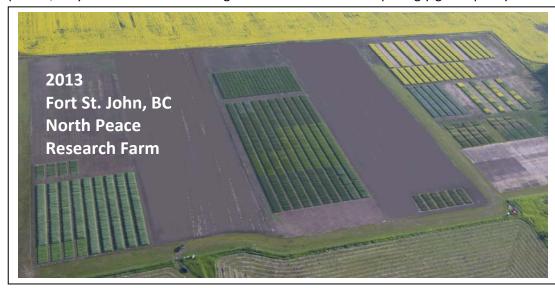

http://www.westernag.ca

Photo (above): Research plots at Dawson Creek's research farm around mid-July 2013; flax bottom left (some blue flowers still showing but today's flowers already wrapping up by mid-morning), canola bottom middle and right, field pea and lentils centre left, barley behind the peas top left, wheat and triticale top right, oat far top right, and more barley top centre. 2013 was a year of frequent well-spaced rains following planting, never at levels to cause flooding, just the pattern continuing right on through the summer and into the harvest period. Crops just did not want to stop growing nor stop producing flowers and thus seed (canola averaged significantly over 30 days of continuous blooming). Despite heavy disease pressures, final yields in all crops were excellent to exceptional, maybe even record breaking in the cereals and of surprisingly good quality for

the most part.

Photo (right): Fort St. John research plots same day in mid-July. Plots of wheat, barley, oat, and triticale in the middle, canola and flax plots upperright, winter wheat bottom right, field pea, lentil, and drybean bottom left.

