

2012 FIELD CROP VARIETY PERFORMANCE

Funding provided by ...

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Agriculture Foundation of British Columbia

Funding for this project has been provided by Agriculture and Agri-Food Canada through the Canadian Agricultural Adaptation Program (CAAP). In British Columbia, this program is delivered by the Investment Agriculture Foundation of BC.

Agriculture and Agri-Food Canada (AAFC) is committed to working with industry partners. Opinions expressed in this document are those of the BC Grain Producers Association and not necessarily those of AAFC.

BC Grain Producers Association 2012 Field Crop Variety Performance BC Peace River Region

Table of Contents

Introduction & Acknowledgements	1
Reference & Terminology	_2
Growing Conditions	_3
Interpreting Data	_4
Fertilizer Rates	5
Herbicide Applications	6
Planting & Harvest Data	6
CWRS Wheat	7
CPS/CWSWS Wheat	11
Durum Wheat	13
Barley	15
Oats	19
Triticale	22
Canola Maturity Rating Chart	23
Pests of Peace River Region Canola	24
Argentine Canola	25
Field Peas	31
Flax	35
Summary of Trials	<u>36</u>
Weather Information	
Seed Distributors	

Front cover photo

Crop Tour 2012 was held July 17th, 2012 at the Fort St John research farm. On the right, people are looking at our new lentil trial. Even though moisture during the growing season was less than ideal, lentils grew well.

Front cover photo credit: Sato Nosho

Publishing Date – Dec 14th, 2012

<u>2012 – B.C. Grain Producers Association</u> <u>Board of Directors</u>

David Wuthrich - President Robert Vander Linden - Vice President Rick Kantz - 2nd Vice President

North Peace Representatives

Robert Vander Linden – Vice President David Wuthrich – President Martin Moore – Research Committee Chair Rick Kantz – 2nd Vice President

South Peace Representatives

Irmgard Critcher – Director Barry Follensbee – Director Garnet Berge – Director Walter Fritsche - Director

<u>2012 – B.C. Grain Producers Association</u> <u>Research Committee</u>

Martin Moore – Research Committee Chair Kerry Clark / Julie Robinson – B.C. Ministry of Agriculture Rep Bruce Baxter Barry Follensbee Gordon Hill Edward Hadland Blair Hill Barry Critcher Garnet Berge

BC Grain Producers Association 2012 Field Crop Variety Performance BC Peace River Region

Introduction and Acknowledgements:

Funding for this report has been provided by AGRICULTURE AND AGRI-FOOD CANADA through the CANADIAN AGRICULTURAL ADAPTATION PROGRAM (CAAP). In British Columbia, this program is delivered by the INVESTMENT AGRICULTURE FOUNDATION OF BC (IAF). The YUKON AGRICULTURAL ASSOCIATION is also providing support through CAAP and matching funds are provided by the BC PEACE RIVER GRAIN INDUSTRY DEVELOPMENT COUNCIL (BCPRGIDC) and BC GRAIN PRODUCERS ASSOCIATION (BCGPA).

LOUIS DREYFUS (Dawson Creek office) should be recognized for their contribution via kernel protein analysis, HADLAND SEED FARM LTD. and HILL FARMS LTD. for bulk certified seed contributions, as well as several other anonymous local producers whom similarly offered contributions of their own certified seed. We thank all these individuals/organizations for their "in-kind" support towards making our field-testing and the production of this book possible. Various other private organizations make financial contributions for field days, etc. throughout the year which further help support efforts of the research department. Special thanks also extended to the site cooperators who continue to generously give their support to the program via use of the land, *Vic Blanchette* for the Fort St. John site, and *School District #59* for the use of the *Hudson School Farm* near Dawson Creek, B.C. A further word of thanks goes out to *Dennis Meier* of Dawson Creek who continuously and generously offers us space on his farm for all our field equipment.

We should also thank our field and lab team who once again helped to make this year yet another success. They are full-time technicians *Satoru Nosho*, *Brandi Smith*, and *Cindy Locken* whom all worked very hard and well together. Further thanks to *Colleen Anderson* for her help in her review of this report as well, and to all our part-time workers who were invaluable.

This document reports all tested materials grown during the 2012 growing season from performance trials placed at both the Dawson Creek and Fort St. John research farms. Materials not included in 2012 but which were previously tested, may now be viewed via earlier publications and are available for viewing or downloading at <u>www.bcgrain.com</u>.

Cautionary Notes:

Multiple-year testing for any one variety is our goal, but often new materials have only been tested for one year, the current year usually. This can sometimes result in an unfair representation of the new single-year materials against statistically stronger multiple-year materials even though this report cautions readers about this possible effect. To try to resolve this issue, as of 2007 we now display the results in two graphs for each crop type, one with only the current year's results, and one with multiple-year results. In the multiple-year graphs, new one-year data is left out. Where **one-year results are shown**, be it in current-year graphs or in charts, **readers still must interpret and use such one-year data with considerable caution.** This is due the fact a variety may change position regarding both yield and maturity as additional results are obtained – the simple effect of compiling data from variable weather patterns over time. The more station years (defined as one test site at one location in one year) that can be used to produce an average, the more stable and reliable a result will be. Hence the association's steadfast efforts to procure multi-year data. By providing readers now with a separate "current year graph" many of the risks with looking at one-year data is still there but the chances of misrepresenting a new entry against its older neighbors is greatly reduced.

This book is produced without bias and is reported to the best of our ability from our own site data collection (except where noted as in any additional canola data). It should only be used as a guide, and where labels or agreements are available or supplied with your product, be it seed or other product, always follow label directions and or agreements.

For More Information Contact:

Martin Moore - Research Committee Chair B.C. Grain Producers Association P.O. Box 6004, Fort St. John, B.C. V1J 4H6 Tel: (250) 787-2588 Clair F. Langlois - Research Manager B.C. Grain Producers Association 401 - 114th Avenue, Dawson Creek, B.C. V1G 2Z7 Tel: (250) 782-2557 FAX: (250) 784-2299

Kerry Clark - P.Ag. Crop Protection Specialist, B.C. Ministry of Agriculture, Dawson Creek, B.C. FAX: (250) 784-2299 Tel: (250) 784-2559 or 1-877-772-2200

BC Grain Producers Association - Reference & Terminology -

Station Years

The number of station years that the variety has been tested can be seen in the yield tables inside the square brackets []. A station year is one test site at one location in one year. For example, a canola trial conducted at two locations over three years would have six station years, or [6]. We advise using caution if the data is based on *less than three station years in total*, or less than two years at both locations. This, of course, is a concern for canola where often a variety does not even stay in the seed market for more than two years.

Interpreting Yield Results

Crops in this book are managed using the same level of inputs as field sized recommendations would suggest. Small-plot research plots offer better consistency and can be better controlled, whereas wet areas and variable soil fertility affect field-scale crop production. However, small plots are subject to edge effect. "Edge effect" is caused by the spaces around the individual plots allowing extra sunlight to penetrate, boosting yields on these exposed outer plants, as compared to the average plant in a field scale situation that would be shadowed by its neighbors. The important concept here is that these effects are equal for all small plots in a given trial, and we can therefore compare varieties in each trial, and look at resulting vields relative to one another. Yields here are thus the result of small plot production and the same level of production is unlikely to be achieved on a large-scale basis. Unfortunately statistics, which are vital, cannot be used on "percent of check variety" data. Thus, we elected to show bushels per acre for this current year for the sole purpose of displaying statistical results for the current year. Treat all yields (percent of check and bushels per acre) as relative results. In all agronomic information the check variety name has been bolded to identify it.

Plant Breeders Rights

The Plant Breeders' Rights (PBR) gives plant breeders "copyright" protection of a variety for up to 18 years. Once a variety has been granted PBR, the breeder has control over the multiplication and sale of the seed. The breeder can take legal action for damages if someone infringes on their rights. Farmers may save some seed for seeding the next year on their own farm, but the sale of the crop as seed for planting purposes to others is not allowed. Many new transgenic herbicide-tolerant varieties have additional restrictions through 'technical use agreements', so be aware of these also, as they often replace PBR status and can have strong consequences if ignored. Varieties protected by PBR can be identified by their PBR logo on a seed bag, seed tag or advertising material. This book tries to identify such PBR lines within "Variety Description" tables with a solid square box. However, ultimately it is the responsibility of the grower to know which line is PBR.

Certified Seed

The cost of *certified seed* is a small additional expense in relation to total crop production input costs, especially when changing to a different variety. Certified seed assures genetic purity, high germination rates and low percentage of foreign seed when compared to common seed. Certified seed can be purchased in bulk through authorized seed dealer networks (see "Seed Distributors" at the back of this report).

Seed Treatment

Choosing disease-resistant varieties and using certified seed is good, but treated seed goes a long way in the fight against plant diseases as well. The cost of a fungicide or a combined fungicide/insecticide seed treatment can be a small price to pay for the amount of protection and peace of mind they provide. The right seed treatment choice is important as some perform better than others for certain crop types. Treated seed must not contaminate grain delivered to an elevator or be used for feed.

- Cereal seed should be treated to control *true loose smut* and early season *seedling* diseases.
- Seed of rye, winter wheat and flax should be treated to control *seedling blight*. Winter wheat and rye also require protection against *smut*.
- Canola seed should be treated to control seed borne *blackleg, damping off* and early *flea beetle* attack.

Ergot

The fungal disease Ergot can attack the grain of all varieties of wheat, barley, rye, triticale and most common species of grass. Oat varieties are rarely attacked. Grain having 0.1% ergot is considered poisonous to livestock and should not be used as feed. The black rice-like "*seed mummies*" can be spotted prior to harvest in heads during a field inspection.

Seed Inoculation

Peas can make much of their nitrogen (N) requirement from the air through a partnership with soil bacteria called Rhizobium. The pea seed must be inoculated immediately before or during seeding with a proper strain of bacteria specific to peas. Rhizobia are living organisms so check the expiry date on the package and follow inoculant label directions carefully. Generally, it is a good idea prior to its use and even during use if possible, to try and reduce the inoculant's exposure to sunlight, open-air and warmth. Granular formulations placed with the seed have traditionally offered good results in Peace Region soils, but new inoculants are constantly entering the market place which may offer excellent inoculation as well. Survival of residual rhizobia organisms in our cool Peace Region soils is not consistently reliable; making use of inoculant with seed a good form of insurance. High soil nitrogen levels (over 60 kg N/ha) will reduce nodulation in the field regardless of inoculation. Cool, dry or excessively wet soils provide a harsh environment for proper inoculation. Under these conditions, a low level of nodulation formation will be the result. Granular inoculant placed with the seed at planting was used on all pea-trials seen in this report.

Seeding Rates

While the following *range* of seeding rates has given consistent yields for each crop in these trials, experience has shown that the top end of the range provides even more consistent results. **Risk of impaired emergence under stressful conditions can be reduced by increasing the seeding rate.** In addition, higher seeding rates can reduce the amount of secondary tillering, **produce earlier and more uniform maturity**, and reduce the amount of green kernels at harvest.

Tests conducted by the Beaverlodge Research Station several years ago throughout the Peace Region showed that by increasing the seeding rate of wheat from 80 to 120 lbs/ac (90 to 134 kg/ha), that the time to maturity was reduced by two days. Our own BCGPA trials involving seeding rates in barley initially showed that when increasing seeding rates to 2.25 to 2.5 bushels per acre for barley, it decreased maturity from 2 to even 4 days, which is significant by harvest. However, over the full five years of the project, results became less significant. Wheat is currently being tested by the BCGPA but no conclusions have been drawn as of yet.

Sugges	ted Rates of S	Seeding
Wheat	90 - 120 lb/ac	100 - 135 kg/ha
CPS Wheat	130 - 180 lb/ac	145 - 200 kg/ha
Barley	75 - 100 lb/ac	85 - 110 kg/ha
Oats	70 - 90 lb/ac	85 - 100 kg/ha
Flax	26 - 40 lb/ac	30 - 35 kg/ha
Rye	65 - 85 lb/ac	73 - 95 kg/ha
Peas	150 - 300 lb/ac	165 - 330 kg/ha
Argentine Canola	5 - 8 lb/ac	6 - 9 kg/ha
Polish Canola	5.5 lb/ac	6 kg/ha

Due to large differences in seed sizes, seeding rates can vary considerably. Therefore, one should base the seeding rate on a *target number* of *viable seeds per square foot*. Using the 1000 kernel weights, adjusting for percent germination and allowing for seed decay (3%), calculate the number of pounds of seed required per acre.

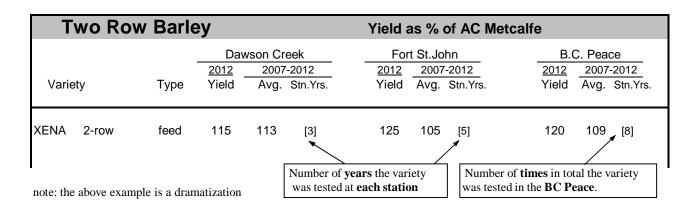
Сгор Туре	Seeds / sq.ft	Avr. 1000 K wt
Wheat - CWRS	24 - 25	35 - 44 g
- CPS / CWES	24 - 25	44 - 52 g
Barley - 6 Row	24 - 25	35 - 43 g
- 2 Row	24 - 25	44 - 53 g
Oats - Hulled	24 - 25	38 - 47 g
Rye	24	30 - 35 g
Peas	8	200 - 345 g

Example (using peas):

Target **8** pea plants per square foot, the variety has a 1000 K wt. of **250** grams, and you estimate that between seed decay and percent germination of the seed lot that you will have, **90%** of the seeds will grow into healthy plants. Therefore...

<u>8 plants/sq.ft x 250 (g/1000 K)</u> x 10 = 222 lb/acre 90 (%)

Answer: You would plant 222 lbs. of pea seed/acre.


BC Grain Producers Association - 2012 Growing Conditions -

The season started off with good growing conditions; a little cooler than normal or preferred and on the dry side for soil moisture, but sufficient moisture in the soil to start crops off healthy. Some emergence issues in small-seeded crops (canola, camelina and flax) arose in 2012, but this was more of a reflection of the heavy crop trash left over from last season's abundant crops than that of dry soils in 2012. Plentiful rains in late May and all through June after planting was completed were welcome events and traditionally a fairly typical pattern for the B.C. Peace Region. The rains gave producers and researchers alike high expectations for high yields and high quality grains for harvest, however, significant rainfall events all but stopped after July arrived and remained off right through until harvest was completed mid-September. All harvest was thus finished by September 14th representing a full month ahead of schedule, with the only exception being some flax at the Fort St. John site. The flax in Fort St. John had responded to what little additional rain that site received in August by attempting to re-flower and thus cause some re-growth issues to deal with at the Fort St. John site by harvest.

The result of the drought in July through to the end of harvest meant the typical issues with a drought were brought on; very early harvest, compressed maturity spread between lines being tested, and less than full potentials for resulting yields. What was really surprising was that the moisture in June had apparently been at sufficient levels so as not to cause flooding but which were sufficient enough to sustain soil moisture levels well into the drought stricken period post July 1st, 2012. A testimony to this was the better than expected cereal and pulse yields. Quality was fairly good as well - in cereals at least – but the longer-season crops (that being the oilseed crops; argentine canola and flax) were not quite as fortunate. Argentine canola and flax showed "acceptable" yield levels, but were a lot lower than what could have been had some significant rainfalls occurred in July and August.

Interpreting Data

The yield for each variety is reported on a regional basis for the Dawson Creek and Fort St. John areas as well as an average for the entire B.C. Peace. Also, the number of years each variety has been tested is given for each of the two regions. In the following examples, the number of years is indicated in [] right after the yield. "Station years" are the total number of times a variety has been tested in these trials.

<u>Statistical Values</u> Entries into the Regional trials are replicated (or repeated) four times (three times minimum) at both locations. Replication is used to derive an overall average per entry per trial, and allow for statistical analysis.

Coefficient of Variance (CV value), given as a percentage, it tells us how statistically sound or reliable a given data set is. Generally, any value less than or equal to 15% is considered to be acceptable and indicates "sound" data. This means if you were to repeat the trial under similar conditions, you would get similar results, or at least we are 95% confident that we would. We tend to be a little more lenient on this 15% for such things as disease or insect data, as these are normally highly variable traits due to the nature of the beast, but we do not like to see yield data from a single trial with a high CV value. Anything less than 10% is considered excellent.

Least Significant Difference test (LSD value), are those little letters behind the *data means*. Basically, if two or more *data means* (or averages) have the same letter behind their number, they are NOT significantly different from one another according to statistics. Therefore, means or averages with the same letter should not be viewed as one being "superior" or "inferior" from the other or others of the same letter. LSD takes vari-

Example:	Dav	Dawson Creek									
	2012	2007-2012									
Variety	Yield	Avg. Stn.Yrs.									
Super X	105 ab	102 [3]									
Superdooper Y	107 a	105 [3]									
So-So 101	100 b	98 [2]									
Old Goody	95 c	97 [6]									

ability into account, and compares "apples" to "apples".
In this example, some people might think variety
"Superdooper Y" is superior to variety "Super X"
and "So-So 101". This is not true according, to
statistics, "Superdooper Y" is superior to variety
"So-So 101", but is equivalent to "Super X" in yield
because both "Superdooper" and "Super X" have
the letters "a" with them. In this example, "Super X"
is not superior (or significantly different), from variety

"So-So 101" either, as both have a " b " behind their means. Also, " Superdooper Y", "Super X", and "So-So 101" are superior to, or a better term is significantly different from " Old Goody". Note, in this report, we only have LSD values for this current year's data, and thus you should still take notice of the long term averages. Note that preferably data should have six station years, (usually meaning 3 years at each site) but that for **any varieties with less than three station years of data, you must compare data with caution.**

Fertilizer Rates Used In 2012

Fort St. John, B.C.	Legal Desc	ription:	SW19 Tp8	4 R18 W6				
	Fertilizer	Pro.		lbs actual/ac	Envir	o-Tes	t Labs	;
Crop	Applied	kg/ha	Placement	Recom. vs. Applied	Ν	P ₂ 0 ₅	K ₂ O	S
Canola	27-0-0-12	228	banded	*Recommended =	60	35	20	25
	6-26-30	76	banded	Actually applied =	61.7	29.2	20.3	24.4
	11-52-0	25	in-furrow					
Flax	27-0-0-12	187	banded	*Recommended =	40	25	15	12
	6-26-30	76	banded	Actually applied =	51.8	29.2	20.3	0.0
	11-52-0	25	in-furrow					
Cereals	46-0-0	150	banded	*Recommended =	65	25	15	12
	6-26-30	76	banded	Actually applied =	68.3	29.2	20.3	0
	11-52-0	25	in-furrow					
Peas	20.5-0-0-24	65	banded	*Recommended =	15	27	15	12
	6-26-30	93	banded	Actually applied =	19.3	33.2	24.9	13.9
	11-52-0	25	in-furrow					

Dawson Creek, B.C.	Legal Desc	ription:	SW20 Tp78	8 R14 W6				
	Fertilizer	Pro.		lbs actual/ac	Envir	o-Tes	t Labs	5
Crop	Applied	kg/ha	Placement	Recom. vs. Applied	Ν	P ₂ 0 ₅	K ₂ O	S
Canola	27-0-0-12	291	banded	*Recommended =	75	30	50	30
	6-26-30 11-52-0	55 0	banded in-furrow	Actually applied =	76.3	26.7	14.7	31.2
Flax	27-0-0-12 6-26-30 11-52-0	253 93 25	banded banded in-furrow	*Recommended = Actually applied =	65 68.6	25 33.2	55 24.9	15 27.1
Wheat & Barley	46-0-0 6-26-30 11-52-0	150 76 25	banded banded in-furrow	*Recommended = Actually applied =	60 68.3	25 29.3	25 20.3	5 0
Malt Barley & Oats	46-0-0 6-26-30 11-52-0	127 50 30	banded banded in-furrow	*Recommended = Actually applied =	35 44.4	22 25.5	15 13.4	10 0
Peas	20-0-0-24 6-26-30 11-52-0	65 93 25	banded banded in-furrow	*Recommended = Actually applied =	20 19.3	25 33.2	80 24.9	15 13.9

*Recommended = recommendations given by ALS Laboratory Group of Saskatoon, SK., calculated from soil samples pulled earlier in the spring of the same calendar year as planted.

Pesticide Applications

		_							
Legal Desc	ription: SW19 Tp84 R18 W6								
Date Applied	Product Used	Product Rate							
14-Jun-12	Muster (ethametsulfuron methyl)	12 g/ac							
	Lontrel 360 (clopyralid)	227 ml/ac							
	Poast Ultra (sethoxydim)	200 ml/ac							
	Merge								
14-Jun-12	WeatherMax (glyphosate) = RR blocks only	400 ml/ac							
	Liberty150SN (glufosinate-ammonium)=LL only	1.35 L/ac							
	Solo (imazamox) = CL blocks only	11.7 g/ac							
11-Jun-12	Sencor (metribuzin) 75%DF	77g/ac							
	MCPA Sodium	190ml/ac							
14-Jun-12	Poast Ultra + Merge	190ml /ac + 1%							
11-Jun-12	Buctril - M (bromoynil + MCPA)	400 ml/ac							
14-Jun-12	Poast Ultra + Merge	190ml /ac + 1%							
11-Jun-12	Buctril - M (bromoynil + MCPA)	400 ml/ac							
	Date Applied 14-Jun-12 14-Jun-12 11-Jun-12 14-Jun-12 14-Jun-12 14-Jun-12	Date AppliedProduct Used14-Jun-12Muster (ethametsulfuron methyl) Lontrel 360 (clopyralid) Poast Ultra (sethoxydim) Merge14-Jun-12WeatherMax (glyphosate) = RR blocks only Liberty150SN (glufosinate-ammonium)=LL only Solo (imazamox) = CL blocks only11-Jun-12Sencor (metribuzin) 75%DF MCPA Sodium14-Jun-12Poast Ultra + Merge11-Jun-12Buctril - M (bromoynil + MCPA) Poast Ultra + Merge							

Dawson Creek, B.C.	Legal Desci		
Сгор	Date Applied	Product Used	Product Rate
Canola (napus & rapa)	13-Jun-12	Muster (ethametsulfuron methyl)	12 g/ac
		Lontrel 360 (clopyralid)	227 ml/ac
		Poast Ultra (sethoxydim)	200 ml/ac
		Merge	400 ml/ac
Canola CPT (Herb. Systems)	13-Jun-12	WeatherMax (glyphosate) = RR blocks only	400 ml/ac
		Liberty150SN (glufosinate-ammonium)=LL only	1.35 L/ac
		Solo (imazamox) = CL blocks only	11.7 g/ac
Field Peas	13-Jun-12	Sencor (metribuzin) 75%DF	77 g/ac
		MCPA Sodium	190 ml/ac
	13-Jun-12	Poast Ultra + Merge	190ml /ac + 1%
Flax	13-Jun-12	Buctril-M (bromoynil + MCPA)	400 ml/ac
	13-Jun-12	Poast Ultra + Merge	190ml /ac + 1%
Malt Barley	9-Jun-12	Refine SG	12 g/ac
Oat		Ag Surf	2L/1000L H2O
		MCPA Ester	228ml/ac
Wheat, Barley, Trit	9-Jun-12	Refine SG	12 g/ac
		Ag Surf	2L/1000L H2O
		MCPA Ester	228ml/ac

All seed was treated with seed treatment: canola with Helix Xtra®; cereal & flax with Raxil FL®; and pea seed with Apron Maxx RTA.

			Plai	nting and	Harvest In	formation			
		Seeding	rate	Date	Soil Temp	Seeding		Harvesting	
Loc.	Crop	lbs/ac	kg/ha	Planted	(C°) @ plant	Depth	Harvest Date	Method	
FSJ	Napus Canola	8	8.9	14-May-12	8	0.75 - 1 inch	10-Sep-12	direct	
	Flax	40 45		10-May-12	5	0.75 - 1 inch	21-Sep-12	desiccate/direct	
	Barley	77 86		17-May-12	4	1 - 1.25 inch	28-Aug-12	direct	
	CWRS Wheat	90	101	17-May-12	4	1 - 1.25 inch	4-Sep-12	direct	
	CPS/CWES	90	101	17-May-12	4	1 - 1.25 inch	4-Sep-12	direct	
	Oats	81 90		17-May-12	4	1 - 1.25 inch	28-Aug-12	direct	
	Triticale	117	131	17-May-12	4	1 - 1.25 inch	4-Sep-12	direct	
	Peas	149	167	8-May-12	4	0.75 - 1 inch	20-Aug-12	direct	
DC	Napus Canola	8	8.9	13-May-12	5	1.25-1.5 inch	8-Sep-12	direct	
	Flax	40	45	9-May-12	3	1.25-1.5 inch	11-Sep-12	desiccate/direct	
	Barley(Malt)	77	86	19-May-12	3	0.75 - 1 inch	30-Aug-12	direct	
	CWRS Wheat	90	101	16-May-12	6	1 - 1.5 inch	3-Sep-12	direct	
	CPS/CWES	90	101	16-May-12	6	1 - 1.5 inch	3-Sep-12	direct	
	Oats	81	90	19-May-12	4	0.75 - 1 inch	30-Aug-12	direct	
	Triticale	117	131	16-May-12	6	1 - 1.5 inch	3-Sep-12	direct	
	Peas	149	167	8-May-12	5	1-1.25 inch	20-Aug-12	direct	

Muster® and Refine Extra® are registered trademarks of DuPont Canada Inc.

Basagran Forte®, Post Ultra®, MCPA Sodium 300®, Solo® and Merge® are registered trademarks of BASF Canada.

Lontrel® and Curtail M® are registered trademarks of Dow AgroSciences Canada Inc.

Buctril M®, Sencor 75 DF®, Decis®, Raxil FL®, Liberty[®] and Vitaflo 280® are registered trademarks of Bayer CropScience Canada Inc. Helix Xtra® is a registered trademark of Syngenta Crop Protection Canada Inc.

AgSurf® is a registered trademark of IPCO

CANADA WESTERN RED SPRING WHEAT

As grain yields increase, protein content generally decreases. Some of the newer varieties have both higher protein and grain yield. To control true *loose smut* of wheat only a systemic fungicide will work as the pathogen is found inside the seed. To control the other types of smut (*covered*, *false loose* and *bunt*) a non-systemic fungicide seed treatment will work as the disease pathogen is on the outside of the seed.

CWRS Wheat	CWRS Wheat Yield as % of Katepwa												
		Da	awson Cr	eek			F	ort St. Jo	ohn		B.C	C. Peace	:
	20	12 Y	'ield	2007	- 2012	20)12 Y	ïeld	2007	- 2012	2012	2007-2	2012
Variety	bus /		% of	Avg.	Station	bus /		% of	Avg.	Station	Avg.	Avg.	Station
	acre		Check	(%)	Years	acre		Check	(%)	Years	(%)	(%)	Years
5603HR	43	ab	93	103	[5]	51	de	104	101	[5]	98	102	[10]
5604HR CL	43	ab	93	96	[4]	56	b-e	113	101	[4]	103	98	[8]
AAC Bailey	48	ab	105	108	[2]	58	а-е	118	115	[2]	111	112	[4]
AAC Redwater *	44 8	ab	96	96	[1]	57	а-е	115	115	[1]	105	105	[2]
AC Barrie	44 8	ab	95	94	[6]	53	de	106	104	[6]	101	99	[12]
AC Splendor	49	ab	107	94	[6]	61	a-d	123	95	[6]	115	95	[12]
BW931 *∆	51 a	ab	112	112	[1]	67	а	135	135	[1]	124	124	[2]
BW932 *∆	48 8	ab	105	105	[1]	66	ab	133	133	[1]	119	119	[2]
Carberry	53 8	ab	115	112	[4]	59	а-е	120	116	[4]	118	114	[8]
Cardale*	47 8	ab	103	103	[1]	55	cde	111	111	[1]	107	107	[2]
CDC Abound	50	ab	108	112	[6]	67	а	135	115	[6]	122	114	[12]
CDC Alsask		ab	114	105	[6]	56	b-e	114	108	[6]	114	106	[12]
CDC Go		ab	95	104	[6]	60	a-d	121	111	[6]	108	107	[12]
CDC Kernen	48	ab	105	102	[4]	59	a-e	119	114	[4]	112	108	[8]
CDC Osler	47 8	ab	103	100	[6]	58	a-e	117	107	[6]	110	104	[12]
CDC Plentiful *	48	ab	105	105	[1]	56	b-e	114	114	[1]	109	109	[2]
CDC Stanley	-	ab	89	101	[4]	56	b-e	113	107	[4]	101	104	[8]
CDC Thrive		ab	85	96	[4]	54	de	109	113	[4]	97	104	[8]
CDC Utmost	47	ab	102	103	[4]	54	de	110	111	[4]	106	107	[8]
CDC VR Morris *	44	ab	95	95	[1]	52	de	106	106	[1]	100	100	[2]
Glenn	54	а	117	106	[4]	56	b-e	113	106	[4]	115	106	[8]
Goodeve		ab	99	101	[6]	55	cde	111	107	[6]	105	104	[12]
Harvest		b	80	94	[6]	52	de	105	103	[6]	92	98	[12]
Infinity	46	ab	100	105	[6]	58	a-e	116	113	[6]	108	109	[12]
Katepwa	46	ab	100	100	[6]	49	е	100	100	[6]	100	100	[12]
Muchmore	47	ab	102	106	[4]	65	abc	131	119	[4]	116	112	[8]
Shaw	46 8	ab	101	102	[4]	57	а-е	115	112	[4]	108	107	[8]
Snowstar **		ab	83	96	[6]	55	cde	111	108	[6]	97	102	[12]
Stettler		ab	94	114	[5]	60	а-е	121	118	[5]	108	116	[10]
Superb	53	ab	115	113	[6]	67	а	135	123	[6]	125	118	[12]
SY 433	45	ab	98	105	[2]	58	а-е	118	108	[2]	108	106	[4]
Unity		ab	98	106	[5]	57	а-е	115	112	[5]	107	109	[10]
Vesper		ab	109	103	[3]	56	b-e	114	105	[3]	111	104	[6]
Whitehawk * **		ab	88	88	[1]	54	de	109	109	[1]	98	98	[2]
WR859 CL	42 a	ab	91	104	[5]	57	а-е	115	105	[5]	103	104	[10]
LSD (P=.05) =	9.39					5.59							
CV value (%) =	12.55					6.96							

Katepwa - check variety

* first year tested, very limited data available

** CWHWS Canadian Western Hard White Spring Wheat

 Δ denotes materials not registered, very limited data available WR859 CL, CDC Abound and 5604HR CL are Clearfield® tolerant varieties

CDC Utmost, Goodeve, Shaw, Unity and Vesper are Wheat Midge Resistant varietal blends

Means followed by the same letter do not significantly differ (P=.05, LSD)

	CWRS Whea			Variety Descriptions										
		В.	C. Pea	ce Aver	ages			A	lberta	Agdex	100/3	2		
			200	7 - 2012	•				Res	istance	e to:			
	Variaty	Days to Maturity +/- check	Height	Bushel Weight Ibs/bu	Ker Prote +/- c	ein %	Lodging	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
_	Variety	T/- CHECK	cm	IDS/DU	+/- C	HECK		S	S L	ОШ	SR	Ĺ	ш	Distributor
	5603HR	0.7	77	63	1	[10]	G	VG	G	G	Ρ	G	F	Viterra
	5604HR CL	-7.4	79	64	0	[8]	G	G	VG	VG	VP	Ρ	F	Viterra
	AAC Bailey	-3.6	92	64	0	[4]	G	G	Р	F	G	F	F	Canterra Seeds
	AAC Redwater *	-4.0	77	64	1	[2]								SeCan
= :	AC Barrie	-2.3	80	64	1	[12]	G	G	G	F	VP	Р	F	SeCan
	AC Splendor	-4.0	79	63	1	[12]	F	F	F	F	F	F	Ρ	SeCan
	BW931 *∆	-1.9	71	64	1	[2]								Alliance Seed Corp.
- ,	BW932 *∆	-2.3	67	64	1	[2]								SeCan
	Carberry	-1.2	75	65	0	[8]	VG	F	G	G	G	Ρ	G	SeCan
	Cardale *	-4.4	71	62	0	[2]								Seed Depot
- 7	CDC Abound	-2.3	76	65	0	[12]	G	F	F	F	Р	Р	VP	Viterra
	CDC Alsask	-2.6	82	63	0	[12]	F	G	G	G	F	VP	Ρ	Viterra
	CDC Go	-3.5	75	64	0	[12]	G	VP	Ρ	G	G	VP	Ρ	Public Variety
	CDC Kernen	0.0	84	64	0	[8]	G	F	VG	F	F	Ρ	F	Canterra Seeds Seeds
	CDC Osler	-3.3	78	63	0	[12]	G	F	G	G	F	F	VP	Public Variety
- 7	CDC Plentiful *	-1.7	75	64	1	[2]								FP Genetics
	CDC Stanley	-2.7	79	63	0	[8]	G	G	G	VP	F	F	Р	Viterra
- (CDC Thrive	-3.8	81	64	0	[8]	G	Р	G	F	F	F	Ρ	SeCan
- (CDC Utmost	-0.9	79	64	0	[8]	G	G	Ρ	VP	F	F	Ρ	FP Genetics
	CDC VR Morris *	-1.0	70	64	1	[2]								Viterra
•	Glenn	0.8	81	66	1	[8]	VG	F	F	F	G	F	F	Canterra Seeds
-	Goodeve	-2.5	80	63	0	[12]	VG	G	G	Ρ	F	Ρ	VP	Alliance Seeds Corp.
	Harvest	-3.3	78	65	0	[12]	VG	VG	G	F	G	Р	VP	FP Genetics
	Infinity	-1.0	80	63	0	[12]	G	G	G	F	Ρ	Ρ	VP	Canterra Seeds
	Katepwa	0.0	84	63	0	[12]	F	F	G	G	Ρ	Ρ	F	SeCan
=]	Muchmore	-1.0	71	65	0	[8]	VG	G	G	G	G	Р	Р	FP Genetics
- :	Shaw	-2.6	84	65	0	[8]	G	G	Р	G	F	Р	Р	SeCan
	Snowstar **	-4.0	74	65	0	[12]	XX	G	Р	Р	Р	F	Ρ	SeCan
- :	Stettler	0.0	76	65	0	[10]	G	G	G	G	G	Р	Ρ	SeCan
•	Superb	-1.7	78	65	0	[12]	G	F	F	G	VP	VP	Р	SeCan
	SY 433	-2.1	96	65	0	[4]	G	G	F	VP	ХХ	F	G	Syngenta
	Unity	-1.7	77	64	0	[10]	G	G	Р	VG	Р	Ρ	Ρ	SeCan
	Vesper	-3.7	88	65	1	[6]	VG	F	F	Р	VP	F	F	SeCan
	Whitehawk * **	-3.0	77	64	-1	[2]	G	G	F	Р	VP	Ρ	F	SeCan
	WR859 CL	-4.2	72	64	0	[10]	G	G	VG	VG	F	Ρ	G	Syngenta

* first year tested, very limited data available

** CWHWS = Canadian Western Hard White Spring Wheat Δ denotes materials not registered, very limited data available

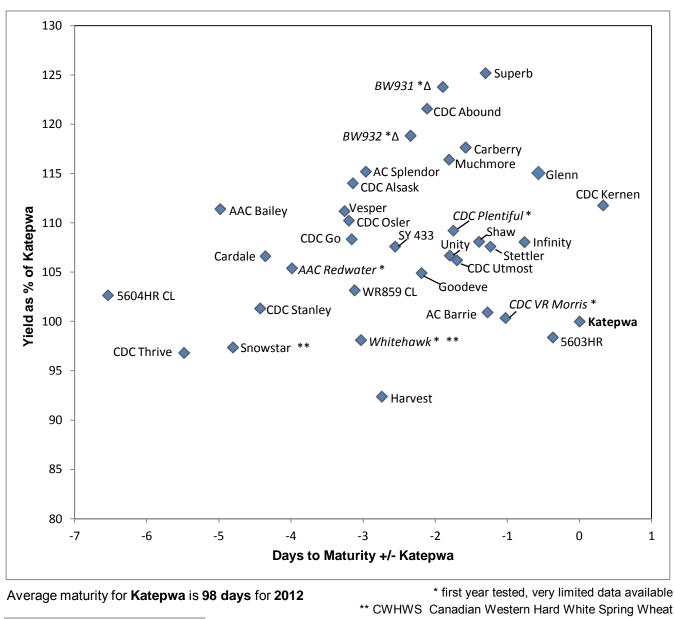
WR859 CL, CDC Abound AND 5604HR CL are Clearfield® tolerant varieties

Unity is a Wheat Midge Resistant variety

Protected by Plant Breeders' Rights

XX = insufficient data Average protein for Katepwa is 13.3 %

Overall average maturity for Katepwa is 104 days


Katepwa - check variety

VG = very good, G = good, F = fair, P = Poor, VP = very poor

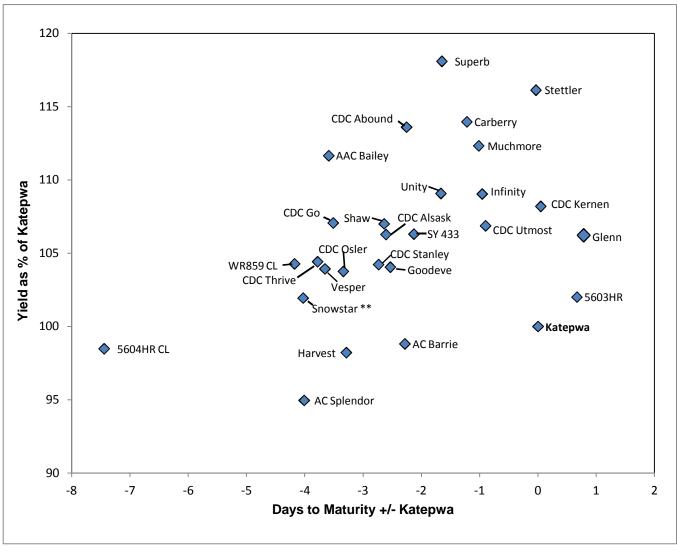
CWRS Wheat

Regional Variety Performance

2012

Katepwa - check variety

 $\Delta\,$ denotes materials not registered, very limited data available


WR859 CL, CDC Abound and 5604HR CL are Clearfield® tolerant varieties

CDC Utmost, Goodeve, Shaw, Unity and Vesper are Wheat Midge Resistant varietal blends

CWRS Wheat

Regional Variety Performance

2007 - 2012

Overall Average maturity for Katepwa is 104 days

** CWHWS Canadian Western Hard White Spring Wheat Katepwa - check variety

WR859 CL, CDC Abound and 5604HR CL are Clearfield® tolerant varieties CDC Utmost, Goodeve, Shaw, Unity and Vesper are Wheat Midge Resistant varietal blends

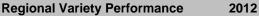
CANADA WESTERN SOFT WHITE SPRING WHEAT

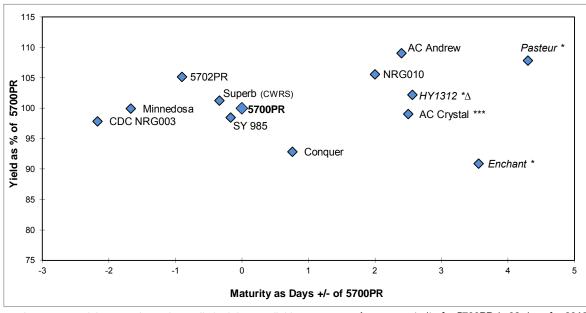
All current Canada General Purpose Spring varieties (CPS and CWSWS are in this class) should be treated with a systemic fungicide seed treatment to control smut. Avoid deep seeding General Purpose wheats. Note the long maturity periods required for the production of currently available CWSWS wheat varieties. Seeding rates for all classes of wheat covered by the new class "General Purpose" should be increased 20 to 25% due to the larger kernel size.

[For testing purposes, CPS and CWSWS wheats are grown together in the same trial and compared against a CWRS]

CPS / CWSWS Wheat

										/				
			D	awson (Creek			F	ort St. Jo		B.C. Peace			
		2012 Yield		2007 -	2007 - 2012		2012 Yield			2012	2012	2007-	2012	
Variety	Туре	bus /		% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	
,	,,	acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
5700PR	CPS-red				100	[5]	63	abc	100	100	[6]	100	100	[11]
5702PR	CPS-red				99	[5]	66	ab	105	105	[6]	105	102	[11]
AC Andrew	CWSWS				107	[5]	68	а	109	111	[6]	109	109	[11]
AC Crystal ***	CPS-red				85	[4]	62	abc	99	92	[5]	99	89	[9]
CDC NRG003	CWGP				94	[2]	61	abc	98	95	[3]	98	95	[5]
Conquer	CPS-red				92	[2]	58	bc	93	89	[3]	93	91	[5]
Enchant *	CPS-red				0	[0]	57	с	91	91	[1]	91	91	[1]
HY1312 *∆	CPS-red				0	[0]	64	abc	102	102	[1]	102	102	[1]
Minnedosa	CPS-white				91	[2]	62	abc	100	93	[3]	100	92	[5]
NRG010	CPS-white				99	[3]	66	ab	106	99	[4]	106	99	[7]
Pasteur *	CWGP				0	[0]	67	а	108	108	[1]	108	108	[1]
Superb (CWRS)	CWRS				99	[4]	63	abc	101	100	[5]	101	99	[9]
SY 985	CPS-red				91	[2]	62	abc	98	92	[3]	98	91	[5]
LSD (P=.05) = CV value (%) =		0.00 0.00		-			5.18 5.75		_					


* first year tested, very limited data available 5700PR - check variety Δ denotes materials not registered, very limited data available *** denotes semi-dwarf stature


Yield as % of 5700PR

Enchant and Conquer are Wheat Midge tolerant Varietal Blend

Note: CPS trial data from Dawson Creek 2012 was not used due to unacceptable CV value from adverse environment.

CPS / CWSWS Wheat

 $\Delta\,$ denotes materials not registered, very limited data available

Average maturity for 5700PR is 98 days for 2012

CPS/CWSWS Wheat

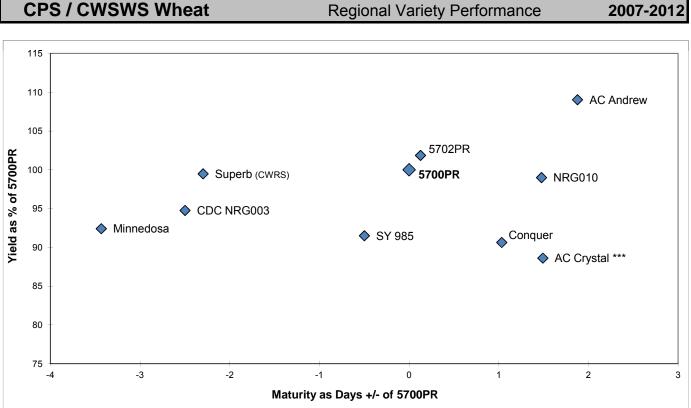
Voriotv	Deceriptione
varierv	Descriptions
v ui i oty	Descriptions

		В.С		ce Avera	ages			A	lberta A	Č.				
			200	7-2012							tance t			
Variety	Туре	Maturity in days +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- ch	in %	Lodging	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
5700PR	CPS-red	0.0	69	64	0	[11]	VG	F	Р	G	Р	Р	VP	Viterra
5702PR	CPS-red	0.1	73	63	0	[11]	G	Р	Р	F	Р	F	Р	Viterra
AC Andrew	CWSWS	1.9	72	64	-1	[11]	VG	Ρ	VP	Р	F	Ρ	VP	SeCan
AC Crystal ***	CPS-red	1.5	70	64	1	[9]	G	Ρ	F	VG	VP	F	VP	SeCan
CDC NRG003	CWGP	-2.5	80	64	0	[5]	G	F	G	VG	VP	Р	VP	Canterra Seeds
Conquer	CPS-red	1.0	85	64	2	[5]	G	Ρ	Р	G	VG	F	Р	Canterra Seeds
Enchant*	CPS-red	3.6	78	65	1	[1]								FP Genetics
HY1312* ∆	CPS-red	2.6	73	65	1	[1]								SeCan
Minnedosa	CPS-white	-3.4	83	64	1	[5]	G	G	F	G	G	Ρ	Р	SeCan
NRG010	CPS-white	1.5	78	64	0	[7]	G	Ρ	VG	VG	VG	F	VP	Canterra Seeds
Pasteur *	CWGP	4.3	71	66	0	[1]								SeCan
Superb	CWRS	-2.3	74	65	1	[9]	G	F	F	G	VP	VP	Р	SeCan
SY 985	CPS-red	-0.5	78	65	1	[5]	G	F	VG	G	G	F	F	Viterra

first year tested, very limited data available

VG = very good, G = good, F = fair, P = Poor, VP = very poor XX = insufficient data

5700PR - check variety Protected by Plant Breeders' Rights


"blanked *Tolerance* data" = no data available yet (too new) $\Delta\,$ denotes materials not registered, very limited data available

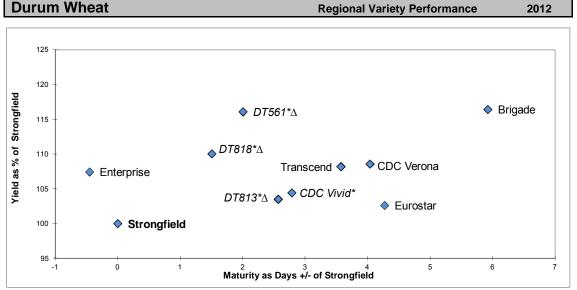
*** denotes semi-dwarf stature

Overall average maturity for 5700PR is 106 days. Overall average protein for 5700PR is 11.7 %

Enchant and Conquer are Wheat Midge tolerant Varietal Blends

Numbers in square brackets [] is number of station years collected for protein

CPS / CWSWS Wheat


DURUM WHEAT

Durum is a type of wheat which is used to make pasta products (macaroni, spaghetti, etc.) and Canada has become a world leader in quality durum. Durum plant breeding within Canada is also moving toward even higher protein content and is developing a brand new category of high gluten strength durum for a specialty pasta market. However, durum requires a long growing season and high heat, two things the Peace River region is not known for having. In the past, durum production has been concentrated in the southern parts of the Canadian prairies.

However, a few producers in northwestern Alberta have had success growing the crop and for this reason it has been tested here in the B.C. Peace. Often surprises arise in our northern long-daylight region and so it was worth investigating durum in a limited fashion. Most varieties of durum wheat currently available are suggested by literature to have approximately 10 days later maturity than CWRS wheat, but this may not be proving to be the case locally but was in 2011 (a very wet & late year). Years 2009 (first year testing durum), 2010, and again 2012, were all years where drought shortened the growing season and as such allowed durum to mature easily in our region. More testing is thus needed with regards to identifying whether maturity is suitable to the Peace River Region. Durum should thus not be grown in large acreage within the B.C. Peace River region for grain production until more is understood about its agronomics and interest develops among the grain buyers to purchase the end product from the region - admittedly a vicious circle of acceptance and trial and error. Disclosure of this data is therefore not currently a recommendation to grow durum in the Peace Region.

It appears, however, that the B.C. Peace River region has one really big advantage in growing durum, as it would seem we can grow it free of fusarium, a major problem in most durum growing regions currently. For this reason data so far collected within the B.C. Peace region has been disclosed as it appears that durum could hold some economic promise to our region in years to come - assuming a buyer/market develops. The test years 2009 and 2010 unfortunately were years of severe drought and poor yield potentials, but compared to other wheat yields over the same period of time at the same testing locations, durum was respectable in yield by comparison and even seemed to survive the drought better than other wheat types. 2011 was a very wet & late year but did not change its promising outlook as a new viable crop-type for our region, noting however that if a normal killing frost would have occurred in 2011 it would have been bad news for anything later than a CWRS wheat no matter how many days later, a bit of a concern for any other late years still to come in the future. In 2012, durum finished up similar to the maturity needed to that of a later CPS, thus an acceptable length of time but more research is needed as mentioned above.

Durum Whe	eat									Yield	l as %	of Stron	gfield	ł
		_	[Dawson C	Creek			F	Fort St. Jo	hn		В.С	C. Peac	e
		2	012	Yield	2009 -	2012	2	2012 `	Yield	2009 -	2012	2012	2009 -	2012
Variety	Туре	bus /		% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
Brigade	CWAD	48	а	136	110	[4]	57	ab	97	103	[4]	116	107	[8]
CDC Verona	CWAD	42	а	117	102	[4]	59	ab	100	106	[4]	109	104	[8]
CDC Vivid *	CWAD	38	а	107	107	[1]	60	ab	102	102	[1]	104	104	[2]
DT561*∆	CWAD	44	а	123	123	[1]	64	а	109	109	[1]	116	116	[2]
DT813*∆	CWAD	36	а	101	101	[1]	62	ab	106	106	[1]	103	103	[2]
DT818*∆	CWAD	43	а	122	122	[1]	58	ab	98	98	[1]	110	110	[2]
Enterprise	CWAD	43	а	121	108	[4]	55	b	93	102	[4]	107	105	[8]
Eurostar	CWAD	39	а	109	103	[4]	57	ab	96	104	[4]	103	103	[8]
Strongfield	CWAD	35	а	100	100	[4]	59	ab	100	100	[4]	100	100	[8]
Transcend	CWAD	41	а	117	102	[3]	59	ab	100	101	[3]	108	102	[6]
LSD (P=.05) =		9.75	5	-			5.14	Ļ	_					
CV value (%) =		13.92	2				6.01							

 $\Delta\,$ denotes materials not registered, very limited data available

Average maturity for Strongfield is 96 days for 2012

 $[\]Delta\,$ denotes materials not registered, very limited data available

Strongfield - check variety

Durum Wheat

Variety Descriptions

		B.0		ce Avera	ages				A	lberta /	0	100/32 tance t			
Variety	Туре	Maturity in days +/- check		Bushel	Ker Prote +/- ch	in %	Lodging	Shatter	Sprouting	Loose Smut	Common Bunt	Stripe Rust	Leaf Spot	FHB	Distributor
 Brigade CDC Verona CDC Vivid * 	CWAD CWAD CWAD	1.7 0.7 2.8	81 75 76	64 64 63	-1 -1 0	[8] [8] [2]	G G	xx xx	F F	P P	G G	G VG	F P	P P	Viterra Alliance Seed Corp. Viterra
 DT561*∆ DT813*∆ DT818*∆ 	CWAD CWAD CWAD	2.0 2.6 1.5	75 72 76	64 65 63	0 0 1	[2] [2] [2]									Syngenta Alliance Seed Corp. AAFC Lacombe
 Enterprise Eurostar Strongfield Transcend 	CWAD CWAD CWAD CWAD	-0.9 2.0 0.0 1.6	77 82 73 84	64 65 64 64	-1 0 0 0	[8] [8] [8] [6]	G G F F	XX XX VG XX	F F F	P P VP VP	G VG G VG	VG VG G VG	G F P F	P P VP P	Canterra Seeds SeCan SeCan FP-Genetics

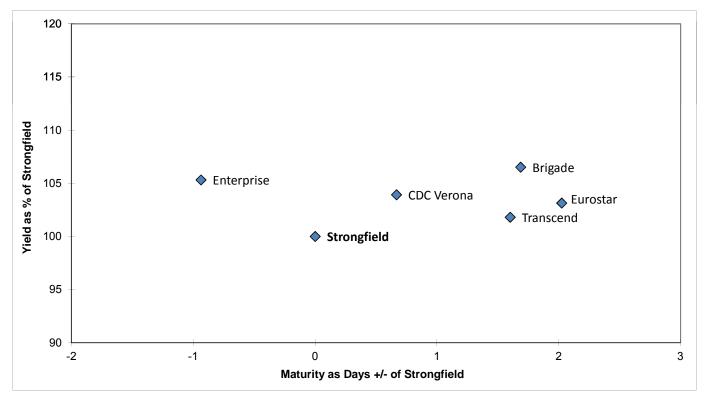
* first year tested, very limited data available

Strongfield - check variety

Protected by Plant Breeders' Rights

VG = very good, G = good, F = fair, P = poor, VP = very poor XX = insufficient data

 $\Delta\,$ denotes materials not registered, very limited data available


Numbers in square brackets [] is number of station years collected for protein

Overall average maturity for **Strongfield** is **107** days. Overall average protein for **Strongfield** is **14.5** %

Durum Wheat

Regional Variety Performance

al Variety Performance

2009-2012

Six Row E	Barley								Yield	as % (of AC	Metca	lfe	
			C	awson C	Creek				Fort St. Jo	ohn		В.0	C. Peac	е
		2	012 ነ	/ield	2007-	2012	2	012	Yield	2007-	2012	2012	2007-	2012
Variety	Туре	bus / acre	1	% of check	Avg. (%)	Stn. Yrs.	bus / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Lacombe	Feed	89	а	111	105	[5]	91	а	106	103	[6]	109	104	[11]
AC Metcalfe	Malt	80	ab	100	100	[5]	85	а	100	100	[6]	100	100	[11]
CDC Anderson	Malt	73	b	91	101	[2]	85	а	100	106	[2]	95	104	[4]
CDC Mayfair	Malt	83	ab	104	103	[5]	86	а	100	96	[5]	102	99	[10]
Celebration	Malt	86	ab	107	104	[3]	91	а	107	100	[3]	107	102	[6]
Muskwa	Feed	91	а	113	114	[2]	92	а	108	111	[2]	111	113	[4]
Sundre ***	Feed	81	ab	101	102	[5]	96	а	113	111	[6]	107	107	[11]
Vivar **	Feed	92	а	115	107	[5]	96	а	113	105	[6]	114	106	[11]
LSD (P=.05) = CV value (%) =		9.70 7.82					7.14 5.40							

Two Row Ba	arley								Yield	as % (of AC	Metca	lfe	
			D	awson C	Creek			F	ort St. Jo	ohn		В.0	C. Peac	е
		2	012 N	/ield	2007-	2012	2	012 Y		2007-	2012	2012	2007-2	
Variety	Туре	bus /	1	% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
AAC Synergy *	Malt	82	ab	101	101	[1]	86	d-g	104	104	[1]	103	103	[2]
AC Metcalfe	Malt	81	ab	100	100	[6]	83	efg	100	100	[6]	100	100	[12]
Bentley	Malt	79	ab	97	105	[5]	84	efg	101	101	[5]	99	103	[10]
CDC Austenson	Feed	81	ab	100	106	[5]	94	bcd	114	108	[5]	107	107	[10]
CDC Clear ¶	Malt	55	b	84	93	[2]	71	def	106	101	[2]	95	97	[4]
CDC Kindersley	Malt	77	ab	95	106	[3]	88	def	106	101	[3]	101	103	[6]
CDC Maverick ***	Feed	75	b	92	98	[2]	80	g	96	98	[2]	94	98	[4]
CDC Meredith	Malt	82	ab	100	109	[5]	91	cde	110	108	[5]	105	108	[10]
CDC PolarStar	Malt	78	ab	95	98	[2]	82	fg	99	95	[2]	97	97	[4]
Cerveza	Malt	84	ab	104	111	[4]	88	def	107	106	[4]	105	108	[8]
Champion	Feed	99	а	122	131	[6]	103	а	124	107	[6]	123	119	[12]
Gadsby	Feed	83	ab	102	111	[3]	97	abc	117	111	[3]	110	111	[6]
Major	Malt	74	b	91	100	[4]	90	c-f	108	101	[4]	99	101	[8]
Merit 57	malt	89	ab	110	115	[5]	91	cde	110	108	[5]	110	111	[10]
Newdale	Malt	80	ab	98	109	[6]	87	d-g	105	104	[6]	101	107	[12]
TR07728	Feed	86	ab	106	114	[4]	94	bcd	113	106	[4]	110	110	[8]
XENA	Feed	79	ab	97	114	[6]	100	ab	121	100	[6]	109	107	[12]
LSD (P=.05) = CV value (%) =		12.96 11.18					5.26 4.10							

AC Metcalfe - check variety for 2 row AC Metcalfe - check variety for 6 row

Means followed by the same letter do not significantly differ (P=.05, LSD)

* first year tested, very limited data available

** semi-dwarf type

*** smooth-awned type

¶ denotes hulless seed types (bu/ac adjusted for hulless)

 $\Delta\,$ denotes materials not registered, very limited data available

Feed Barle	y									١	/ari	ety	Descriptions
		В.(ce Avera	iges		/		Agdex			fo	
			200	7-2012				F	Resista	nce to	2		
Variety	Туре	Days to Maturity +/- check	Height cm	Bushel Weight Ibs/bu	Ker Prote +/- cl	in %	Lodging	Loose Smut	False Smut	Root Rot	Scald	FHB	Distributor
			Eligible	for Gene	ral Pur	pose G	rades	Only					
AC Lacombe	6 row	-0.7	75	50	-1	[11]	G	Р	G	Ρ	Ρ	VP	SeCan
CDC Austenson	2 row	4.2	69	55	-1	[10]	G	VP	VG	F	VP	F	SeCan
Champion	2 row	2.3	71	56	-1	[12]	G	VP	VG	XX	VP	F	Viterra
Gadsby	2 row	3.2	86	56	0	[6]	F	VG	VG	F	VG	F	SeCan
Muskwa	6 row	0.4	88	54	-1	[4]	G	Р	VG	Ρ	G	VP	SeedNet
Sundre ***	6 row	5.7	80	53	-1	[11]	G	Ρ	VG	Ρ	VG	VP	Mastin Seeds, AB
TR07728	2 row	1.9	75	56	0	[8]	G	Ρ	VG	G	VP	F	Viterra
XENA	2 row	1.1	71	55	0	[12]	G	Ρ	Р	G	VP	G	Viterra
				Semi-d	warf	varietie	es						
Vivar **	6 row	-0.6	70	51	-1	[11]	VG	F	VG	G	F	VP	SeCan
				Fora	ge va	rieties							
CDC Maverick ***	2 row	3.2	108	57	1	[4]	F	VP	VG	F	Ρ	G	SeCan

Malt Barle	ey									١	/ari	ety	Descriptions
		В	.C. Pead	ce Averag	jes		ļ	Alberta	Agdex	100/	'32 inf	o	
			2007	7-2012				Res	sistance	e to			
		Days to		Bushel	Ker	nel	D			ot			
		Maturity	Height	Weight	Prote	in %	Lodging	Loose Smut	ut se	Root Rot	pla	m	
Variety	Туре	+/- check	cm	lbs/bu	+/- c	neck	Loc	Loose Smut	False Smut	Roc	Scald	FHB	Distributor
AAC Synergy *	2 row	-0.5	72	56	-1	[2]							Syngenta
AC Metcalfe	2 row	0.0	72	55	0	[23]	F	VG	F	F	VP	F	SeCan
Bentley	2 row	0.2	73	53	0	[10]	G	Ρ	G	G	VP	Ρ	Canterra Seeds
CDC Anderson	6 row	-1.6	94	53	0	[4]	G	G	VG	F	Р	F	SeCan
CDC Kindersley	2 row	-3.3	80	56	0	[6]	G	VP	VG	F	VP	F	SeCan
CDC Mayfair	6 row	-5.6	71	51	0	[10]	G	VP	G	F	VP	Ρ	Canterra Seeds
CDC Meredith	2 row	3.2	69	54	-1	[10]	F	VG	G	G	VP	F	SeCan
CDC PolarStar	2 row	-2.4	96	55	0	[4]	G	VP	VG	Ρ	VP	G	Canterra Seeds
Celebration	6 row	-5.9	86	53	1	[6]	VG	VG	VG	Ρ	VP	Ρ	Canterra Seeds
Cerveza	2 row	1.0	75	54	0	[8]	F	VG	VG	F	VP	F	Mastin Seeds, AB
Major	2 row	-0.1	73	54	0	[8]	G	VG	G	F	Ρ	F	Viterra
Merit 57	2 row	3.6	72	54	-1	[10]	F	Р	VP	F	Р	G	Canterra Seeds
Newdale	2 row	-0.1	70	54	0	[12]	F	VP	G	G	Ρ	F	FP Genetics
				Hulle	ess va	rieties							
CDC Clear ¶	2 row	-0.6	98	64	0	[4]	F	VG	VG	F	VP	G	U of S

first year tested, very limited data available

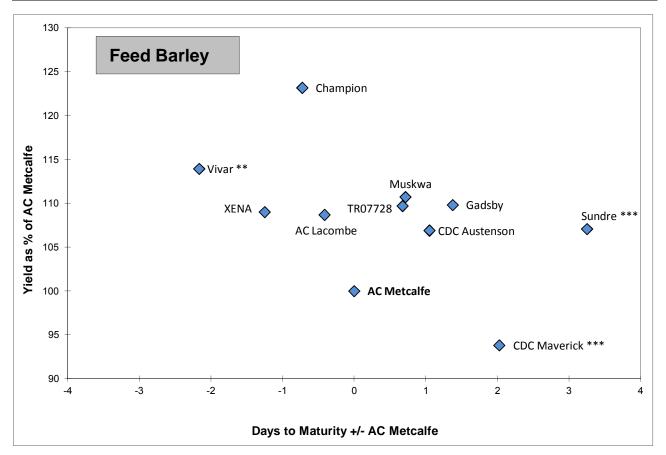
Protected by Plant Breeders' Rights

 $\P \ \text{ denotes hulless seed types}$

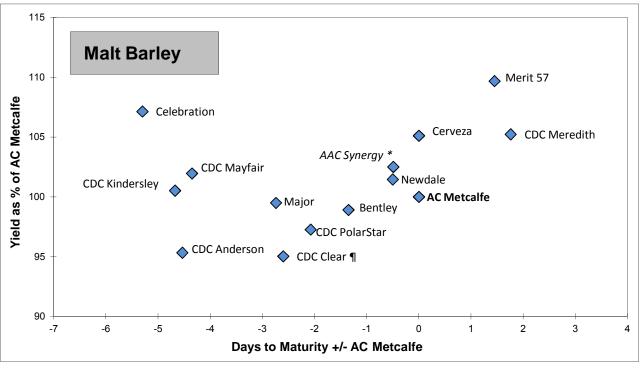
VG= very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

Overall average maturity for AC Metcalfe is 92 days Overall average protein for AC Metcalfe is 13.6%


 $\Delta~$ denotes materials not registered, very limited data available

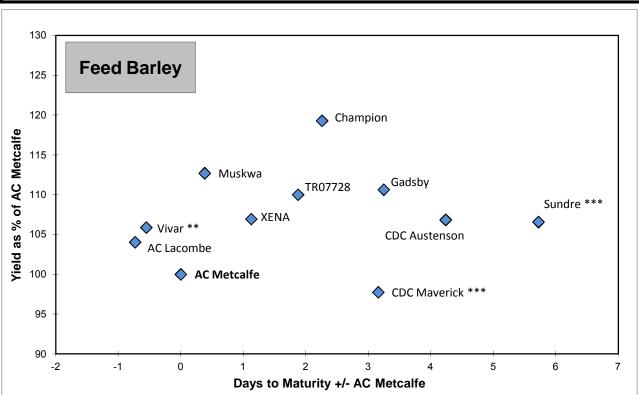
AC Metcalfe - check variety


Numbers in square brackets [] is number of station years collected for protein

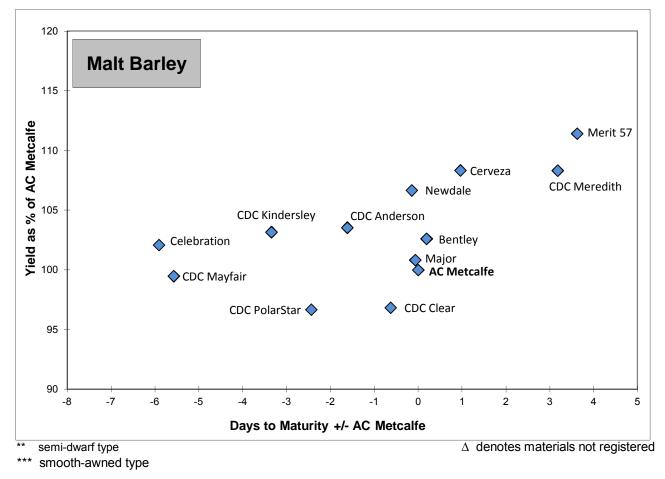
** semi-dwarf type *** smooth-awned type

Average maturity for AC Metacalfe in 2012 is 87 days (both graphs)

* first year tested materials


** semi-dwarf type

*** smooth-awned type


 Δ denotes materials not registered

¶ denotes hulless seed types (bu/ac adjusted for hulless)

Overall average maturity for AC Metacalfe is 92 days (both graphs)

OAT

Oat is usually a feed crop but some varieties are also suitable for higher value feed and food markets. The milling industry prefers higher protein varieties with plump kernels and lower hull content, while the horse industry prefers white hulled varieties. Hulless oat varieties have excellent feed and food value but need to be stored drier than normal varieties (<12% moisture) and do not flow as well in the bin due to their pubescence (hairs), which seem to "lock together". The exception to this rule is the new "hairless hulless" types such as the variety *GehI*, included for the first time in our tests back in 2011, which is a "*low pubescence* hulless" oat aimed at a replacement for rice actually, hence the marketing slogan "prairie rice" for it. *GehI* was re-tested in 2012 but developed emergence issues thus yield data is not displayed below for the year 2012. Investigations continue as to why the hairless hulless variety *GehI* had such emergence issues after giving such a good germ pre-plant in the lab. A potential contracted market in the Peace River area is a real possibility if agronomics work out for *GehI* or other hairless hulless oat types. Yield values for hulless oat varieties. Keep this ratio in mind while comparing hulless to hulled, however currently (in this 2012 report) there are no "*low pubescence*" hulless oat types displayed. (See earlier reports for more information on both "traditional hulless" types and *GehI*).

Oat							Yield	as %	of CD	C Dan	cer	
		C	awson C	reek			Fort St. Jo	ohn		В.	C. Peac	e
		2012	∕ield	2007-	2012	2012	Yield	2007-	2012	2012	2007-	2012
Variety	Colour	bus / acre	% of check	Avg. (%)	Stn. Yrs.	bus / acre	% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Mustang	White	114 b	111	115	[6]	105 a	101	112	[6]	106	114	[12]
CDC Big Brown	Brown	107 bc	104	99	[3]	97 cd	94	105	[3]	99	102	[6]
CDC Dancer	White	103 bc	100	100	[6]	104 bc	100	100	[6]	100	100	[12]
CDC Minstrel	White	97 bc	94	94	[6]	106 d	103	103	[6]	98	98	[12]
CDC Nasser	Yellow	98 bc	95	95	[2]	94 abc	90	100	[2]	93	98	[4]
CDC Seabiscuit	Yellow	104 bc	101	94	[2]	103 cd	100	104	[2]	101	99	[4]
CDC SO-I	Tan/Brown	104 bc	101	96	[3]	107 abc	103	107	[3]	102	101	[6]
Lu	Yellow	109 bc	106	100	[6]	102 e	98	101	[6]	102	100	[12]
OT3054 *∆	White	80 c	78	78	[1]	84 abc	81	81	[1]	80	80	[2]
OT3056 *∆	White	100 bc	97	97	[1]	94 cd	91	91	[1]	94	94	[2]
Souris *	Yellow	94 bc	91	91	[1]	106 a	103	103	[1]	97	97	[2]
Stride	White	93 bc	91	93	[2]	90	0 87	96	[2]	89	95	[4]
Triactor	White	134 a	130	117	[6]	108	0 105	109	[6]	117	113	[12]
LSD (P=.05	5) =	18.64				10.76						
CV value (%	(6) =	12.71				7.52						

Means followed by the same letter do not significantly differ (P=.05, LSD) CDC Dancer - check variety * first year tested, very limited data available

 $\Delta\,$ denotes materials not registered, very limited data available

Gehl is a "low pubescence hulless" oat intended for the whole grain oat market (see comment above chart)

Health Benefits Of Oat

Oats are mainly used for livestock feed especially horses and cows and only a small percentage of oat has been traditionally used for human consumption. However, oat is a great source of fibre which consists of more than half as soluble fibres. Oat is high in protein and mineral contents included calcium, iron, magnesium, zinc, copper, manganese, thiamin, folacin, and vitamin E. Oat is higher in these components than any other whole grain, such as wheat, barley, corn or rice. Rich in Vitamin B1 oat can help maintain carbohydrate metabolism. Many scientific researchers have proven that eating oatmeal, oat bran and whole oat products improves both blood pressure and cholesterol levels and furthermore, it also reduces the risk of heart disease, cancer and diabetes. Thus, oat is a significant contributor to the good health of not only livestock but also to good human health as well.

Oats							Variety Descriptions
	_	BC Peac	e Avera	ges	Alb	erta Agdex	100/32 info
	_	2007	′ - 2012		Tol	erance to:	_
		Maturity		Bushel		o v	
		as days	Height	Weight	odaina	Smuts	
Variety	Туре	+/- check	cm	lbs/bu	c	Sn	Distributor
AC Mustang	Feed/forage	4.6	90	43	G	6 F	Mastin Seeds
CDC Big Brown	Milling	5.1	87	43	G	G VG	SeCan
CDC Dancer	Milling	0.0	83	41	Ģ	G VG	FP Genetics
CDC Minstrel	Milling	3.1	76	42	V	G VG	FP Genetics
CDC Nasser	Feed	9.2	75	39	G	G G	T & L Seeds
CDC Seabiscuit	Milling	9.6	90	41	G	G G	Canterra Seeds
CDC SO-I	Feed	0.3	81	40			T & L Seeds
Lu	Feed	-2.0	81	41	G	G VG	SeCan
OT3054 *∆	Milling	11.5	71	38			FP Genetics
OT3056 *∆	Milling	10.5	74	41			U of S
Souris *	Milling	4.8	66	40			Seed Depot
Stride	Milling	4.9	96	44	G	G VG	AAFC-Lacombe
Triactor	Milling/Feed	3.5	79	39	G	6 VG	Canterra Seeds

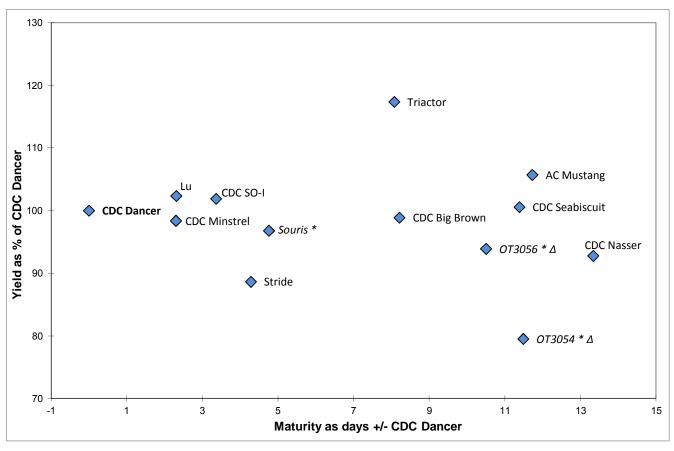
CDC Dancer - check variety

Protected by Plant Breeders' Rights

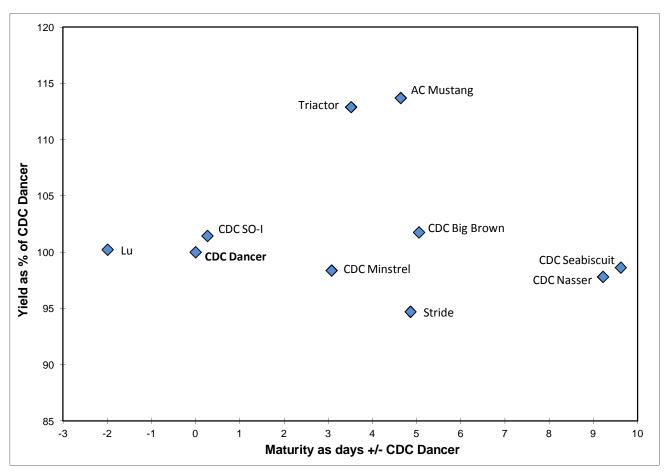
Overall average maturity for CDC Dancer is 94 days

VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data


first year tested, very limited data available

 $\Delta\,$ denotes materials not registered, very limited data available


Regional Variety Performance

2012

Average maturity for CDC Dancer in 2012 is 83 days

Oats

Overall average maturity for CDC Dancer is 94 days

Oats for Feed

Oats are often sown to provide fodder in the form of silage or greenfeed. Oats will yield more silage or greenfeed per unit area than any other cereal crop. If managed properly, it can provide 3-4.5 tons of dry matter per acre, or more, of high quality feed containing up to 10 percent protein¹. Many years of comparing yields of oats with barley have shown oats to be superior in the Black and Grey Wooded soil zones¹. Although the percent protein level in barley is higher than in oats, the total amount of protein produced on a given area is higher with oats than with barley¹. Oats have about 22-26 percent hull whereas barley averages about 12-14 per cent hull on a weight basis¹. When choosing a variety, the seed yield as well as the forage yield should be considered, thereby keeping one's options open to harvest as forage or grain¹. We do not currently evaluate oat varieties for forage yield in these tests.

Forage Oats

It is believed by some farmers that one variety might be better than another because it appears "leafier"; however, tests on a number of varieties have shown very little variation in leafiness². Having said that however, such work has not likely included the newer lines of forage oats that are entering the market place now. These new "forage only" lines, such as *CDC Baler* and *Murphy*, have usually been much larger plants in our tests than their traditional counterparts developed for seed quality, which should translate to more biomass to be available for forage production. Note however, that traditionally our oat tests do not lodge and so it is unclear as to whether larger plants are going to be a concern for early lodging in a large-scale forage production practice in our area. Lodging data here is from Alberta Agdex 100/32.

Other Comments

On heavier soils and in the more moist areas, lodging resistance should be considered, but again, traditionally lodging has not been a concern in our BC Peace oat trials, and as mentioned above, lodging data provided here is from Alberta Agdex 100/32. The variation in straw feed quality between oat varieties is insignificant and should not be used as a variety selection criterion³. The average feed values are: protein 4%, fibre 49%, calcium 0.27%, and phosphorus 0.08%³.

Source^{1,2,3}: Alberta Agriculture, Food, and Rural Development website www.agric.gov.ab.ca

SPRING TRITICALE

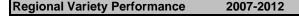
Triticale is a genetic cross (not a hybrid) developed by crossing wheat (*Triticum turgidum* or *Triticum aestivum*) with rye (*Secale cereal*). Most varieties of spring triticale currently available are approximately 10 days or more later maturing than CWRS wheat, and as such they should not be grown in the B.C. Peace River region for grain production. However, a few varieties are proving to be earlier than traditional spring triticale varieties, and perhaps as breeding continues earlier lines may come along that can be grown here for grain with a consistant and early enough maturity. Their high grain yields are "attention grabbers", and so it is worth watching their development, especially as triticale seems to hold a lot of potential for ethanol production in the Peace River region if breeding efforts could produce earlier maturing lines. Drought tolerance is the primary advantage that spring triticale have over other spring cereal crops. Spring triticales are also a valuable alternative or compliment to barley & oat as forage feed, but current triticale lines do tend to have low resistance to Ergot, likely due to late maturity. This may become less of a concern as earlier lines are bred. It is for these reasons, especially its potential use as a high volume ethanol feedstock, that data is included in this report.

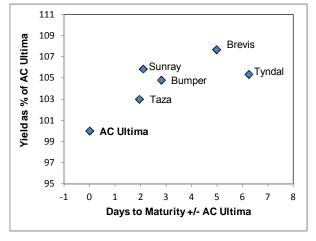
Spring Triticale

oping i	incarc					Tield as 76 Of AC Offinia								
				Dawson Cre	ek				Fort St. J	lohn		В.	C. Peace	
		2	2012 \	′ield	2007-2	2012	201	12 Y	ield	2007	-2012	2012	2007-20)12
Variety		bus / acre		% of check	Avg. (%)	Stn. Yrs.	bus / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Ultima		75	b	100	100	[6]	86	b	100	100	[6]	100	100	[12]
Brevis		86	а	115	109	[2]	92	а	107	106	[2]	111	108	[4]
Bumper		76	b	102	106	[4]	85	bc	98	104	[4]	100	105	[8]
Sunray		79	ab	106	103	[3]	93	а	107	109	[3]	106	106	[6]
Taza		79	ab	107	105	[3]	83	bc	96	101	[3]	101	103	[6]
Tyndal		75	b	100	105	[6]	82	с	94	106	[6]	97	105	[12]
	LSD (P=.05) =	7.2	1				3.54	•						
	CV value (%) =	6.1	2				2.71							

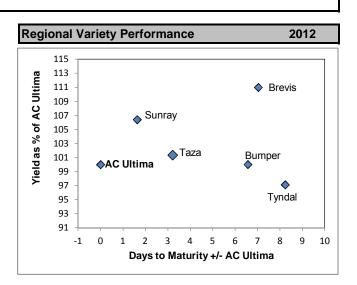
Means followed by the same letter do not significantly differ (P=.05, LSD)

* first year tested, very limited data available


 $\Delta\,$ denotes materials not registered, very limited data available

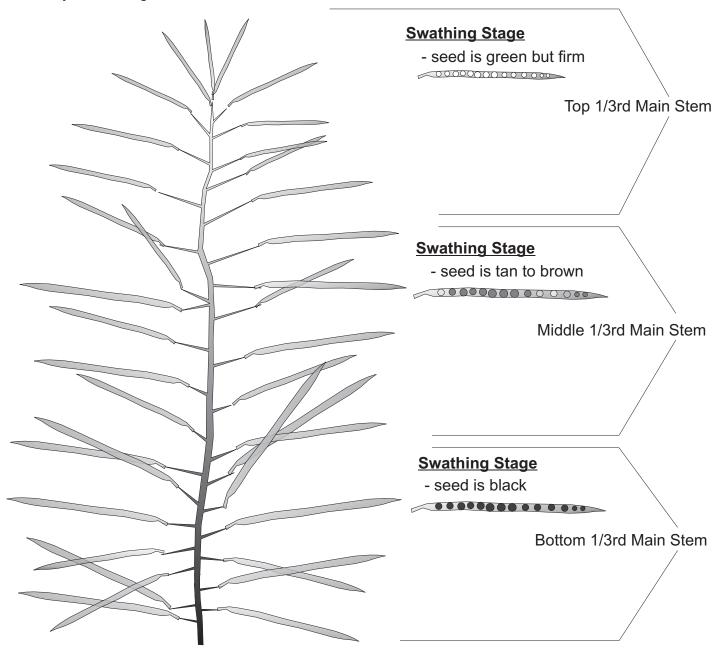

Yield as % of AC Ultima

AC Ultima - check variety


Protected by Plant Breeders' Rights

le								Varie	ety D	Descriptions
					Albe	rta Ag	dex 1	00/32		
BC Pe	eace Averag	es 2007-2012	2		F	Resist	ance to	D:		
Maturity as days +/- check	Height (cm)	Bushel Weight <u>(Ibs/bu</u> s)	TKW (g / 1000)	Lodging	Shatter	Sprouting	Loose Smut	Common Bunt	FHB	Distributor
0.0 5.0	88 96	58 61	44 44	G	G	F	VG	VG	F	FP Genetics Wagon Wheel Seed Corp.
2.8	81	60	44	VG	G	F	XX	VG	Ρ	SeCan
2.1 2.0 6.3	90 98 90	58 58 58	43 45 43	VG G G	G G G	F F P	VG XX VG	VG VG VG	P VP P	SeedNet Solick Seeds SeCan
	BC Pe Maturity as days +/- check 0.0 5.0 2.8 2.1 2.0	BC Peace Averag Maturity Height as days Height +/- check (cm) 0.0 88 5.0 96 2.8 81 2.1 90 2.0 98	BC Peace Averages 2007-2012 Maturity Bushel as days Height Weight +/- check (cm) (lbs/bus) 0.0 88 58 5.0 96 61 2.8 81 60 2.1 90 58 2.0 98 58	BC Peace Averages 2007-2012 Maturity Bushel TKW as days Height Weight (g / +/- check (cm) (lbs/bus) 1000) 0.0 88 58 44 5.0 96 61 44 2.8 81 60 44 2.1 90 58 43 2.0 98 58 45	BC Peace Averages 2007-2012 Maturity Bushel TKW as days Height Weight (g / +/- check (cm) (lbs/bus) 1000) 9 0.0 88 58 44 G 5.0 96 61 44 2.8 81 60 44 VG 2.1 90 58 43 VG 2.0 98 58 45 G	Albe BC Peace Averages 2007-2012 Maturity Bushel TKW as days Height Weight (g / +/- check (cm) (lbs/bus) 1000) O 0.0 88 58 44 G G 5.0 96 61 44 VG G 2.8 81 60 44 VG G 2.1 90 58 43 VG G 2.0 98 58 45 G G	Alberta Age Alberta Age BC Peace Averages 2007-2012 Resist Maturity Bushel TKW Bushel <td>Alberta Agdex 10 BC Peace Averages 2007-2012 Alberta Agdex 10 Maturity as days Bushel Height TKW Weight Bushel (g / by the base TKW 0.0 88 58 44 G G F VG 0.0 88 58 44 G G F VG 5.0 96 61 44 VG G F XX 2.8 81 60 44 VG G F XG 2.1 90 58 43 VG G F VG 2.0 98 58 45 G G F XX</td> <td>Alberta Agdex 100/32 Alberta Agdex 100/32 BC Peace Averages 2007-2012 Maturity as days Bushel Height TKW (g / (lbs/bus) Esistance to: 000 Esistance to: 000</td> <td>Alberta Agdex 100/32 BC Peace Averages 2007-2012 Maturity as days Bushel Height +/- check TKW (g / (lbs/bus) TKW point Bushel to g TKW point TKW to g TK TKW to g TKW to g TKW to g TKW to g TK TK</td>	Alberta Agdex 10 BC Peace Averages 2007-2012 Alberta Agdex 10 Maturity as days Bushel Height TKW Weight Bushel (g / by the base TKW 0.0 88 58 44 G G F VG 0.0 88 58 44 G G F VG 5.0 96 61 44 VG G F XX 2.8 81 60 44 VG G F XG 2.1 90 58 43 VG G F VG 2.0 98 58 45 G G F XX	Alberta Agdex 100/32 Alberta Agdex 100/32 BC Peace Averages 2007-2012 Maturity as days Bushel Height TKW (g / (lbs/bus) Esistance to: 000 Esistance to: 000	Alberta Agdex 100/32 BC Peace Averages 2007-2012 Maturity as days Bushel Height +/- check TKW (g / (lbs/bus) TKW point Bushel to g TKW point TKW to g TK TKW to g TKW to g TKW to g TKW to g TK TK

Overall Average maturity for AC Ultimais 106 days



Average maturity for AC Ultima is 94 days for 2012

Definition of Canola Maturity Used In This Report

Please check with the *Canola Council of Canada* for complete definition of "swathing maturity". It is this "ready for swathing" time period that is used here to describe "maturity".

It is very important to split pods and check the seed inside as outer pod colour does not reflect the true maturity of the plant. Often the outer pod colour can still be green while seed inside has turned to black. Other times the pod colour could be pale yellow while green seed is within. One field inspection is not enough, one must visit a particular field several times to catch a progression in maturity so as not to miss the safe swathing period. Cool wet weather periods can slow or even temporarily halt the progression of maturity, especially prior to swathing. Several portions of the same field per variety must be checked as well because often minor field variations can change maturity across a given field.

2012 Crop Pest Status in the BC Peace Region

Clubroot of canola: 2012 saw an expansion of the number of infected fields in Alberta, confirmation of the disease spreading to Saskatchewan, and detection of clubroot DNA (but not plant symptoms) in Manitoba. So far, it has NOT been found in the BC Peace.

Although progress is being made in breeding varieties with some resistance to the disease, it is still far better to not have the fungus in the soil in the region. Clubroot is a canola disease that could seriously reduce the ability of BC Peace region farms to grow the crop. The distribution of infested fields continues to expand from the Edmonton area. The map of county status as of Nov 2012 can be seen at the following link <u>http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/prm14255</u> Club root could easily be transferred from there to here with a little bit of soil. It may be a good idea for you as a landowner having energy or construction equipment visiting (perhaps for pipeline work), to get an agreement that the equipment be cleaned prior to it coming on to your property. Check out the problem on the Internet: Alberta Clubroot Management Plan <u>http://www1.agric.gov.ab.ca/\$Department/deptdocs.nsf/all/agdex11519</u> Also see links at the bottom of that document, to: a disease fact sheet, Best Management Practices and an equipment cleaning protocol developed to disinfect machinery and equipment to prevent the spread of clubroot.

Aster yellows: canola plants with misshapen "bladder" pods and reduced seeds, showed up in the BC Peace this year. The disease is spread by leafhoppers, which may have survived a milder winter or been blown in to the area by spring winds. Something to consider in future. <u>http://www.canolawatch.org/2012/11/07/aster-yellows-ga/</u>

Hawkweeds: another big threat (also not a bug) to BC Peace agriculture is a group of weed species that until recently were absent, and will still not often be seen. They have flowers and seeds like dandelions, but are also perennial and displace other vegetation by creeping along the soil surface. Orange hawkweed is most distinctive, but there are also yellow species that at a glance may look like relatively harmless Hawksbeard. See <u>http://www.bcinvasives.ca/images/stories/documents/tips/Invasive Hawkweeds TIPS.pdf</u> or ask for a poster at the Agriculture office. The NorthEast Invasive Plant Committee with your help is working hard to keep these and other species out of the region.

It is worth knowing the pest players and risks. Further information is available from agriculture service suppliers (id. booklets), and on websites such as Canola Council's "**canola watch**" <u>http://www.canolawatch.org/#sign-up-inner</u>. For brief discussions of five insect pest species that have caused significant damage in the past: see "Pest" article in this spot in the 2008 BCGPA Variety Trials book, or the web version at <u>http://www.bcgrain.com/pdf/2008/2008%20Book%20-%20canola.pdf</u> page 22.

Kerry.clark@gov.bc.ca Agrologist, BC Ministry of Agriculture

Dawson Creek 250 784 2559

Argentine Can	ola					Yield	as 9	% of 45H	21	
		Daws	son Cr	eek	Fort	St. Jo	hn	B.C	. Peac	e .
		2012	2007-	2012	2012	2007-	2012	2012	2007-	2012
		% of	Avg.	Stn.	% of	Avg.	Stn.	Avg.	Avg.	Stn.
Variety	Туре	check	(%)	Yrs.	check	(%)	Yrs.	(%)	(%)	Yrs.
1918*	Roundup Ready®	90	90	[1]	95	95	[1]	93	93	[2]
43E01	Roundup Ready®	96	97	[3]	95	95	[3]	95	96	[6]
43E02*	Roundup Ready®	103	103	[1]	99	99	[1]	101	101	[2]
45H21	Roundup Ready®	100	100	[9]	100	100	[10]	100	100	[19]
45H26	Roundup Ready®	93	104	[3]	99	104	[3]	96	104	[6]
45H29 ***	Roundup Ready®	104	111	[3]	111	111	[3]	107	111	[6]
45H31	Roundup Ready®	100	103	[2]	108	109	[2]	104	106	[4]
45S51	Roundup Ready®	100	103	[2]	107	105	[2]	104	104	[4]
45S52	Roundup Ready®	98	103	[2]	113	111	[2]	105	107	[4]
6040 RR	Roundup Ready®	100	100	[2]	100	95	[2]	100	97	[4]
6050 RR*	Roundup Ready®	113	113	[1]	105	105	[1]	109	109	[2]
CSC-12-001*∆	Roundup Ready®	105	105	[1]	113	113	[1]	109	109	[2]
Fusion	Roundup Ready®	94	97	[2]	103	102	[2]	98	99	[4]
Rugby	Roundup Ready®	93	101	[3]	94	95	[4]	94	98	[7]
5440	LibertyLink®	113	116	[3]	109	116	[4]	111	116	[7]
L120*	LibertyLink®	109	109	[1]	109	109	[1]	109	109	[2]
L130	LibertyLink®	107	117	[2]	109	108	[2]	108	112	[4]
L150	LibertyLink®	106	119	[2]	113	115	[2]	110	117	[4]
Peace	conventional	70	76	[4]	69	72	[4]	70	74	[8]
5525 CL	Clearfield®	104	102	[4]	98	98	[4]	101	100	[8]
5535 CL	Clearfield®	102	99	[2]	107	102	[2]	105	101	[4]

45H21 - check variety

* caution, first year tested and or very limited data available Δ = not currently registered

*** Club-root Resistance

Roundup Ready® is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF

Note: "System Varieties" (Clearfield®, Roundup Ready®, or LibertyLink®) are grown together in with "conventional" Argentine varieties (as only one napus trial per site with a common check in 2012) and thus conventional herbicides are used for weed control. (See page 6 for herbicides used).

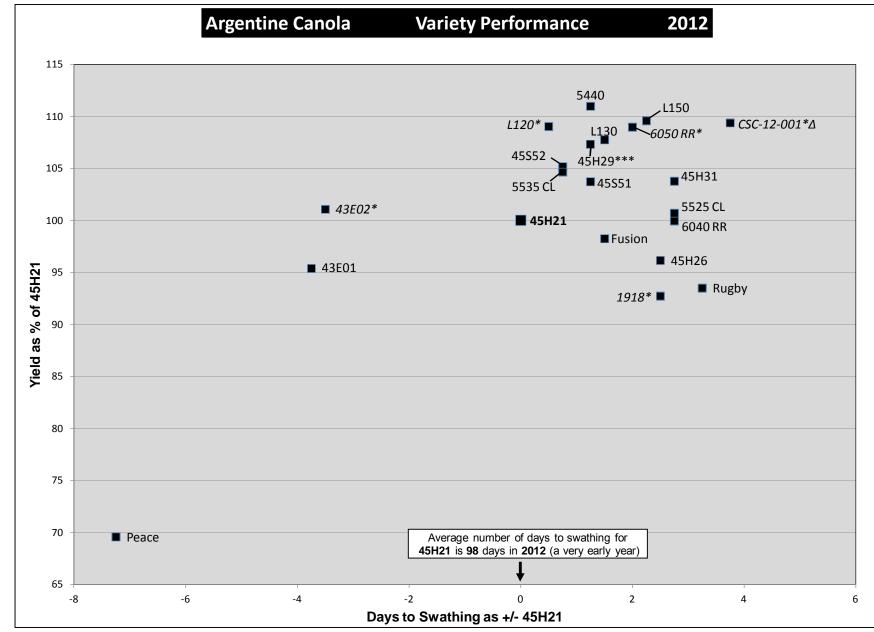
Coefficient of Variance (CV) values of the napus trials for 2012 were as follows: DC = 8.9 FSJ = 5.9

Argentine Canola

Variety Descriptions

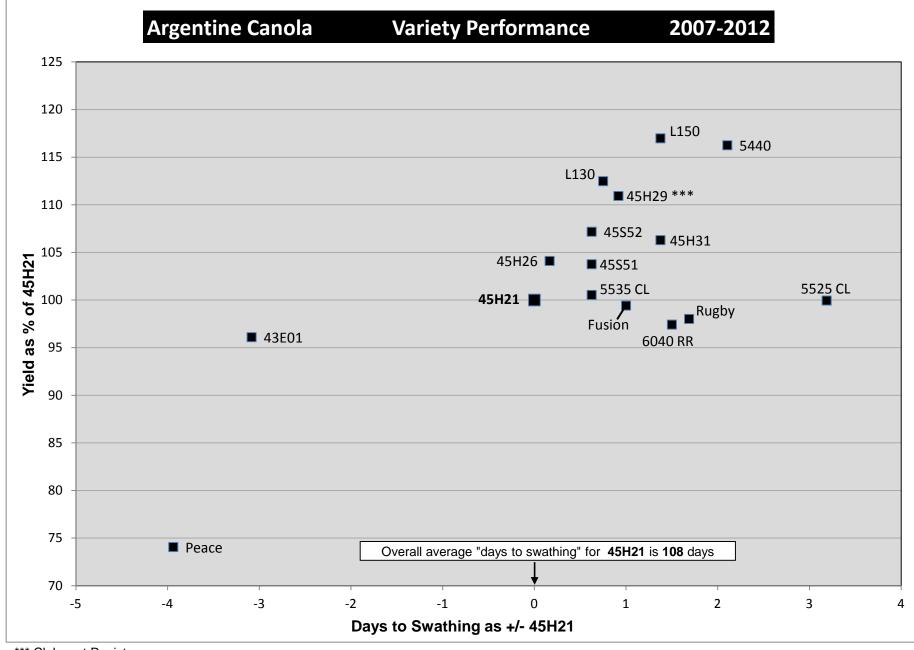
Variety	Туре	Herbicide Tolerance	Da Swa	Peace Avg. sys to athing ¹ - check 2007-2012	Blackleg Rating (Data from Vario	^{us info.)} Distributor
1918*	HYB	Roundup Ready®	2.5	2.5	MR	Canterra Seeds
43E01	HYB	Roundup Ready®	-3.8	-3.1	MR	Pioneer Hi-Bred
43E02*	HYB	Roundup Ready®	-3.5	-3.5	MR	Pioneer Hi-Bred
45H21	HYB	Roundup Ready®	0.0	0.0	MR	Pioneer Hi-Bred
45H26	HYB	Roundup Ready®	2.5	0.2	R	Pioneer Hi-Bred
45H29***	HYB	Roundup Ready®	1.3	0.9	R	Pioneer Hi-Bred
45H31	HYB	Roundup Ready®	2.8	1.4	R	Pioneer Hi-Bred
45S51	HYB	Roundup Ready®	1.3	0.6	R	Pioneer Hi-Bred
45S52	HYB	Roundup Ready®	0.8	0.6	MR	Pioneer Hi-Bred
6040 RR	HYB	Roundup Ready®	2.8	1.5	R	Brett Young
6050 RR*	HYB	Roundup Ready®	2.0	2.0	R	Brett Young
CSC-12-001*∆	HYB	Roundup Ready®	3.8	3.8	R	Canterra Seeds
Fusion	HYB	Roundup Ready®	1.5	1.0	R	SeCan
Rugby	OP	Roundup Ready®	3.3	1.7	R	SeCan
5440	HYB	LibertyLink®	1.3	2.1	R	Bayer Crop Science
L120*	HYB	LibertyLink®	0.5	0.5	R	Bayer CropScience
L130	HYB	LibertyLink®	1.5	0.8	R	Bayer CropScience
L150	HYB	LibertyLink®	2.3	1.4	R	Bayer CropScience
Peace	OP	conventional	-7.3	-3.9	R	Viterra
5525 CL	HYB	Clearfield®	2.8	3.2	R	BrettYoung
5535 CL	HYB	Clearfield®	0.8	0.6	R	Brett Young

Protection by Plant Breeders' Rights


R = Resistant, MR = Moderately Resistant, MS = Moderately Susceptible **OP** = open pollinated, **SYN** = synthetic, **HYB** = hybrid * caution, first year tested and/or very limited data.

Roundup Ready $\ensuremath{\mathbb{R}}$ is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF

Average 'days to swathing' for 45H21 is 98 days for 2012 Overall average 'days to swathing' for 45H21 is 108 days


¹For full description of "Days to swathing" see page 23.

 Δ = not currently registered *** Club-root Resistance

Page 27

*** Club-root Resistance

*** Club-root Resistance

Page 28

Warning: data presented below is composed from two sites, one year only.

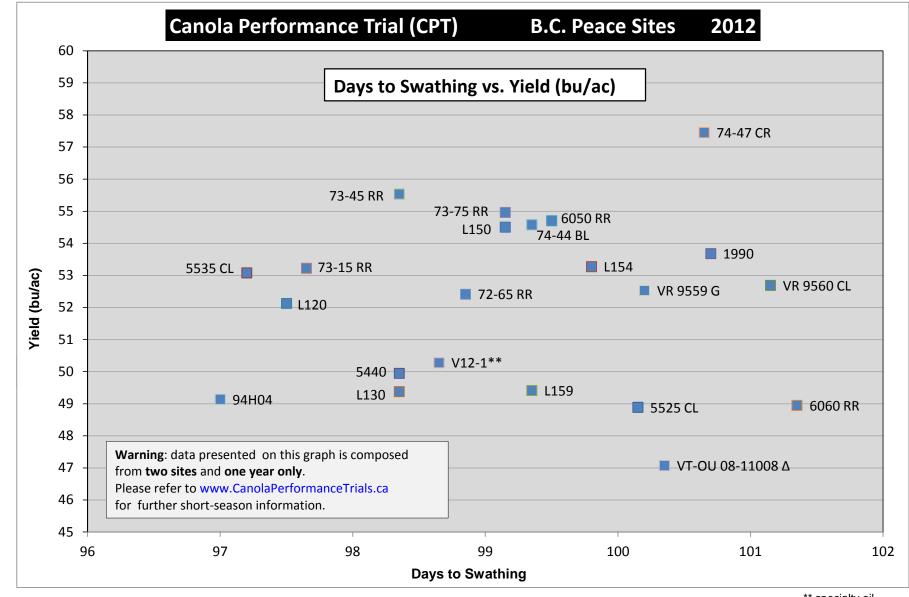
Please refer to <u>www.CanolaPerformanceTrials.ca</u> for further short-season information involving other CPT site results.

Canola Pe	rfor	mance Tria	I (CP1	-)		B.C. I	Peace	Sites	201
			•	n Creek	Fort St	. John	B.C.	Peace	
			20	12	201	12	201	2 Avg.	
Variety	Туре	Herbicide Tolerance	YIELD bu/ac	Maturity Days to	YIELD bu/ac	Maturity Days to	YIELD bu/ac	Maturity Days to	Distributor
Clearfield® herbicede	telerent	ovetem							
5525 CL	HYB	Clearfield®	45 a	100.3	52 e	100.0	49	100	Brett Young
5535 CL	HYB	Clearfield®	45 a 49 a	95.7	57 b-e	98.7	49 53	97	Brett Young
VR 9560 CL	HYB	Clearfield®	49 a 48 a	101.3	58 b-e	101.0	53	101	Viterra
VR 9500 CL	IIID	Cleanleide	40 a	101.5	30 D-6	101.0	55	101	viteria
LibertyLink® herbiced									
5440	HYB	LibertyLink®	43 a	98.0	56 b-e	98.7	50	98	Bayer CropScience
L120	HYB	LibertyLink®	46 a	97.0	58 b-e	98.0	52	98	Bayer CropScience
L130	HYB	LibertyLink®	41 a	98.7	57 b-e	98.0	49	98	Bayer CropScience
L150	HYB	LibertyLink®	46 a	99.0	63 ab	99.3	55	99	Bayer CropScience
L154	HYB	LibertyLink®	46 a	100.3	61 a-d	99.3	53	100	Bayer CropScience
L159	HYB	LibertyLink®	43 a	98.7	56 cde	100.0	49	99	Bayer CropScience
Roundup Ready® her	bicede to	olerant system							
1990	HYB	Roundup Ready®	47 a	100.7	60 a-d	100.7	54	101	Canterra Seeds
6050 RR	HYB	Roundup Ready®	50 a	100.0	59 bcd	99.0	55	100	Brett Young
6060 RR	HYB	Roundup Ready®	42 a	101.0	56 cde	101.7	49	101	Brett Young
72-65 RR	HYB	Roundup Ready®	48 a	97.0	57 b-e	100.7	52	99	Dekalb
73-15 RR	HYB	Roundup Ready®	48 a	97.3	58 b-e	98.0	53	98	Dekalb
73-45 RR	HYB	Roundup Ready®	51 a	99.0	60 bcd	97.7	56	98	Dekalb
73-75 RR	HYB	Roundup Ready®	48 a	98.0	62 abc	100.3	55	99	Dekalb
74-44 BL	HYB	Roundup Ready®	50 a	98.7	59 bcd	100.0	55	99	Dekalb
74-47 CR	HYB	Roundup Ready®	50 a	101.0	65 a	100.3	57	101	Dekalb
94H04	HYB	Roundup Ready®	44 a	97.3	54 de	96.7	49	97	FP Genetics
V12-1 **	HYB	Roundup Ready®	43 a	98.0	57 b-e	99.3	50	99	Cargill Specialty Oils
VR 9559 G	HYB	Roundup Ready®	48 a	100.7	58 b-e	99.7	53	100	Viterra
VT-OU 08-11008 Δ	HYB	Roundup Ready®	39 a	99.7	55 de	101.0	47	100	Viterra
LSD (P=.05)			7.36		3.64	-			
Standard Deviation			5.20		2.57				
CV			11.26		4.4				

Protection by Plant Breeders' Rights

 Δ not currently registered

OP = open pollinated, SYN = synthetic, HYB = hybrid Caution, one year data so very limited data ** specialty oil


Roundup Ready® is a registered trademark of Monsanto Canada Inc. LibertyLink® is a registered trademark of Bayer CropScience Clearfield® is a registered trademark of BASF

The following description of the CPT trials was provided by: **seed.ab.ca** publication (Winter, 2011). Italics are minor changes by BCGPA to be current with 2012.

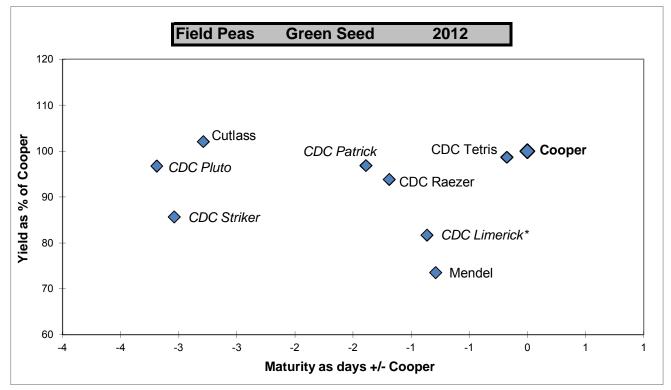
Canola Performance Trials are coordinated by the Canola Council of Canada Note: The CPT system is not affiliated with provincial regional variety testing.

This canola variety table summarizes the performance of selected registered canola varieties available for planting in spring 2013. The postregistration Canola Performance Trial (CPT) testing in 2012 was designed to be more reflective of field practices. The appropriate herbicide products have been applied to the matching herbicide tolerant (HT) varieties in small plots, with no 'check' variety assigned. Individual location data for the small plot trials are available at <u>www.Canola PerformanceTrials.ca</u>, but the best performance indicator is to compare varieties over multiple sites. This also includes comparing performance of small plot trials with field scale trial results. The CPT information on-line provides both data sources which have been reviewed through a protocol and data audit process. This process assures that data was collected and trials conducted in a scientific manner and that comparisons are unbiased. With the changes in trial management and data source collection, data from 2012 and 2011 are not considered comparable to previous trials.

Detailed notes on other agronomic attributes of varieties and trials management are at www.CanolaPerformanceTrials.ca

** specialty oil

Field Pea	(Green	Seed	d)				Y	ield as	% o f	Co	oper		
	**Designated	ed Dawson Creek					F	ort St. Jo	B.C	B.C. Peace			
	Powdery	2012	Yield	2007-2	2012	20)12 ነ	/ield	2007-2	2012	2012	2007-	2012
Variety	Mildew	bus /	% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
	Resistant	acre	check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
CDC Limerick*	VG	36 b	68	68	[1]	62	bc	95	95	[1]	82	82	[2]
CDC Patrick	VG	48 a	92	95	[5]	67	ab	102	102	[5]	97	98	[10]
CDC Pluto	VG	48 a	91	100	[2]	67	ab	102	99	[2]	97	100	[4]
CDC Raezer	VG	51 a	97	98	[2]	59	С	91	91	[2]	94	94	[4]
CDC Striker	Р	47 a	90	85	[6]	53	d	82	86	[6]	86	85	[12]
CDC Tetris	VG	50 a	95	98	[2]	67	ab	102	98	[2]	99	98	[4]
Cooper	VG	52 a	100	100	[6]	65	ab	100	100	[6]	100	100	[12]
Cutlass	VG	52 a	100	99	[5]	68	а	105	106	[5]	102	103	[10]
Mendel	VG	33 b	64	85	[5]	54	d	83	92	[5]	74	89	[10]
LSD (P=.05 CV value (%	,	7.84 9.79				3.50 3.84							


Means followed by the same letter do not significantly differ (P=.05, LSD)

**Powdery Mildew resistance VG=Very Good, F=Fair, P=Poor (data: Alberta Agdex 100/32)

 $\Delta\,$ denotes materials not registered, very limited data available

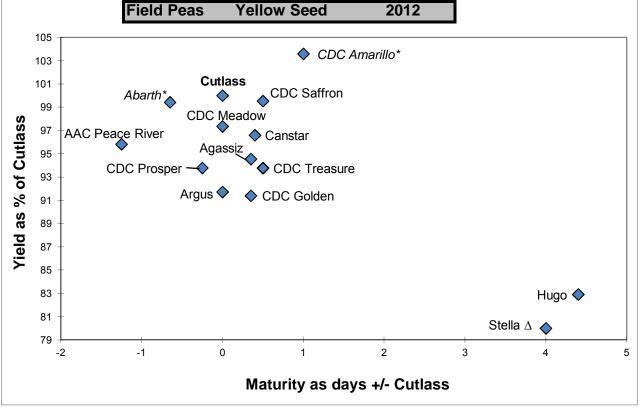
* first year tested, very limited data available

Cooper - check variety

Overall average maturity for **Cooper** is **94** days for **2012**

Field Pea	(Yellow	/ Se	ed)					Yiel	d as '	% of	Cutla	ss	
	**Designated		Dawson Creek					Fo	ort St. Jo	hn		B.C. Peace		
	Powdery	20)12 Y	ield	2007-2	2012	20	012 Y	ield	2007-2	2012	2012	2007-	2012
Variety	Mildew Resistant	bus / acre		% of check	Avg. (%)	Stn. Yrs.	bus / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AAC Peace River	VG	44	ab	100	99	[3]	67	cd	91	113	[3]	96	106	[6]
Abarth*	VG	46	а	105	105	[1]	70	bcd	94	94	[1]	99	99	[2]
Agassiz	VG	42	ab	95	103	[5]	69	bcd	94	102	[6]	95	102	[11]
Argus	VG	40	abc	91	97	[3]	68	bcd	92	110	[3]	92	103	[6]
Canstar	VG	44	ab	99	100	[5]	69	bcd	94	103	[6]	97	101	[11]
CDC Amarillo*	VG	46	а	106	106	[1]	75	а	101	101	[1]	104	104	[2]
CDC Golden	VG	38	bcd	88	94	[5]	70	bcd	95	92	[6]	91	93	[11]
CDC Meadow	VG	42	ab	97	101	[5]	72	abc	98	101	[6]	97	101	[11]
CDC Prosper	VG	41	ab	95	98	[4]	69	bcd	93	97	[5]	94	98	[9]
CDC Saffron	VG	42	ab	96	94	[2]	76	а	103	99	[2]	100	97	[4]
CDC Treasure	VG	41	ab	94	98	[4]	69	bcd	94	100	[5]	94	99	[9]
Cutlass	VG	44	ab	100	100	[5]	74	ab	100	100	[6]	100	100	[11]
Hugo	VG	34	d	78	96	[4]	65	d	88	96	[5]	83	96	[9]
Stella Δ (F)	VG	35	cd	81	70	[3]	59	е	79	90	[3]	80	80	[6]
LSD (P=.05) CV value (%)		3.80 5.47					3.51 3.53		-					

Means followed by the same letter do not significantly differ (P=.05, LSD)


(F) = forage variety

**Powdery Mildew resistance: VG=Very Good, F=Fair, P=Poor (data: Alberta Agdex 100/32)

 Δ denotes materials not registered, very limited data available

* first year tested, very limited data available

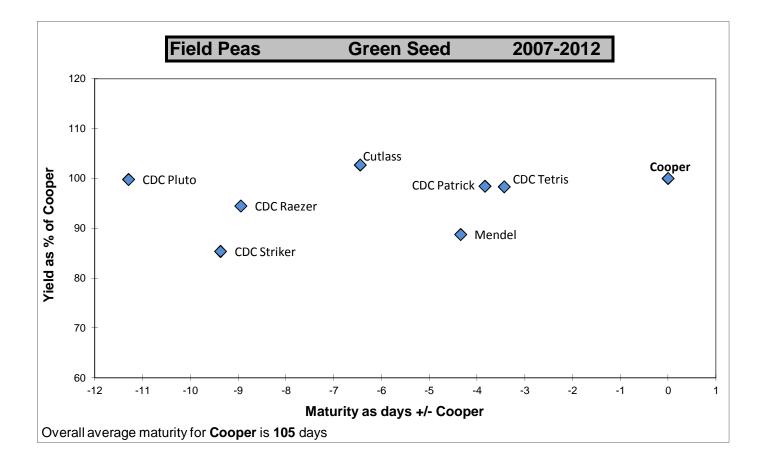
Cutlass - check variety

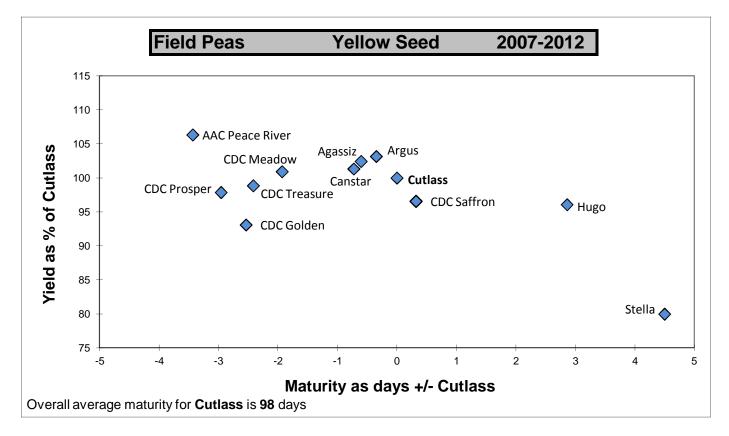
Average maturity for **Cutlass** is **91** days for **2012**

Field Peas					Variety Descriptions
	BC P	eace Aver	ages 2007-	2012	
	Maturity	Vine			-
	as days	Length	Lodging	TKW	
Variety	+/- check	cm	1-9**	g/1000	Distributor
		<u>Yel</u>	low Seed		
AAC Peace River	-3.4	75	0	227	Hadland Seed Farms
Abarth*	-0.6	65	0	252	FP Genetics
Agassiz	-0.6	88	2	239	Canterra Seeds
Argus	-0.3	71	0	233	SeCan
Canstar	-0.7	68	2	261	Canseed (Canada) Ltd.
CDC Amarillo*	1.0	67	0	227	Sask Pulse Growers
CDC Golden	-2.5	66	1	227	Sask Pulse Growers
CDC Meadow	-1.9	73	2	220	Sask Pulse Growers
CDC Prosper	-3.0	61	1	158	Sask Pulse Growers
CDC Saffron	0.3	77	0	261	Sask Pulse Growers
CDC Treasure	-2.4	73	1	224	Sask Pulse Growers
Cutlass	0.0	64	3	237	Sask Pulse Growers
Hugo	2.9	51	2	230	FP Genetics
Stella (F)	4.5	82	0	241	Alliance Seeds Corp.
		Gro	een Seed		
CDC Limerick*	-0.9	64	0	227	Sask Pulse Growers
CDC Patrick	-3.8	68	1	201	Sask Pulse Growers
CDC Pluto	-11.3	82	0	186	Sask Pulse Growers
CDC Raezer	-8.9	88	0	242	Sask Pulse Growers
CDC Striker	-9.4	66	1	245	Sask Pulse Growers
CDC Tetris	-3.4	90	0	235	Sask Pulse Growers
Cooper	0.0	63	2	290	Canterra Seeds
Cutlass	-6.4	61	2	235	Sask Pulse Growers
Mendel	-4.3	72	1	236	FP Genetics

Some varieties may not be suitable for the human consumption market. Producers should contact their intended buyer/processor before seeding to ensure the marketability of specific varieties. Many green seeded varieties will bleach if exposed to periods of wetting and drying in the field near harvest. Uncleaned and damaged seed is considered to be low quality and is only suitable for the feed market. The amount of seed coat damage suffered during harvest varies with variety. Splitting may be reduced if peas are harvested tough (20% moisture) & dried slowly in an aeration bin.

Lodging data is becoming important criteria when selecting peas for our area, as peas still standing at harvest stand a better chance of escaping ecretia contamination from large wildlife, especially if harvested as direct-cut. Note that due to variability of lodging, numbers averaged tend to be lower than can occur in a given year.


Overall average maturity for Cutlass is 98 days, and 105 days for Cooper


Protected by Plant Breeders' Rights

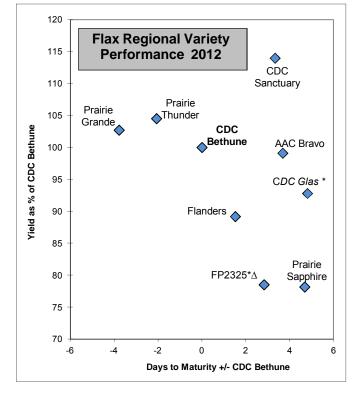
(F) = Forage Variety

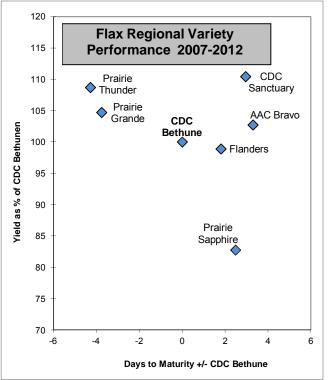
 $\Delta\,$ denotes materials not registered, very limited data available * first year tested, very limited data available

** 1 - 9 scale; 1 = none, 9 = 100% affected

Fields of flax have been successfully grown in our region for many years, however growing flax in the B.C. Peace River region is still at present a risky venture. Large acreage should be discouraged until further breeding programs have resulted in earlier maturing varieties. The BC Grain Producers Association is looking into the development of earlier maturing varieties as well as frost-tolerant lines that can be planted earlier than traditionally. *Prairie Thunder* and *Prairie Grande* are definite improvements to this end but more work needs to be done. For this reason this information is being provided here. It has become apparent that it is **very important to plant flax as early as possible** (as first advised by Dr. Paul Dribnenki, previous Viterra flax breeder). This seems to prevent flower abortion in heat and reduces reflowering in August which in the end helps to deliver a more consistant and earlier maturation of the seed.

Flax							Yiel	d as 🤋	∕₀ of	CDC	Bethune	•		
		Dav	wson	Creek			Fort St	John		В.С	C. Peace		Variet	y Descriptions
	201	2 Yi	eld	2007-2	2012	2012	Yield	2007-2	2012	2012	2007-2012	Maturity	'Height	t
Variety	bus /		% of	Avg.	stn	bus /	% of	Avg.	stn	Avg.	Avg. stn	days +/-	-	
	acre	C	heck	(%)	yrs	acre	Check	(%)	yrs	(%)	(%) yrs	check	(cm)	Distributor
AAC Bravo	33	а	104	106	[2]	16 b	94	99	[2]	99.1	103 [4]	3.3	63	FP Genetics
CDC Bethune	31	а	100	100	[6]	17 b	100	100	[5]	100	100 [11]	0.0	54	SeCan
CDC Glas*	29	а	93	93	[1]	16 b	92	92	[1]	92.8	92.8 [2]	4.8	55	SeCan
CDC Sanctuary	31	а	98	108	[4]	22 a	130	113	[3]	114	110 [7]	3.0	60	SeCan
Flanders	28	а	90	97	[6]	15 b	89	101	[5]	89.2	98.9 [11]	1.8	50	SeCan
FP2325*∆	28	а	90	90	[1]	11 c	67	67	[1]	78.5	78.5 [2]	2.8	55	Viterra
Prairie Grande	30	а	94	100	[6]	19 ab	111	109	[5]	103	105 [11]	-3.8	50	SeCan
Prairie Sapphire	28	а	90	88	[3]	11 c	66	78	[2]	78.2	82.8 [5]	2.5	60	Alliance Seed Corp.
Prairie Thunder	31	а	98	102	[6]	19 ab	111	115	[5]	105	109 [11]	-4.3	51	Canterra Seeds
LSD (P=.05) =	4.3	9	-			3.15								
CV value (%) =	10.0	1				13.17								


Means followed by the same letter do not significantly differ (P=.05, LSD)


Protected by Plant Breeders' Rights

 Δ denotes materials not registered, very limited data available

* first year tested, very limited data available

CDC Bethune - check variety

Average maturity for CDC Bethune is 107 days for 2012

Overall average maturity for CDC Bethune is 115 days.

Summary of all 2012 Research Trials

Data used directly for the production of this report...

Regional Variety Trials	Site	Varieties	Replicates	Plots	Source
Regional 2 Row Barley *	DC	17	4	68	Alex Fedko - AAFRD-CDC North, Edmonton
Regional 6 Row Barley (& hulless) *	DC	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Oats *	DC	14	4	56	Alex Fedko - AAFRD-CDC North, Edmonton
Regional CWRS Wheat (HRSW) *	DC	35	4	140	Alex Fedko - AAFRD-CDC North, Edmonton
Regional GP Wheat(General Purp./CPS/SWS) *	DC	13	4	52	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Triticale *	DC	6	4	24	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Durum Wheat	DC	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Prairie Wide Napus CPT (Herbicide Systems)	DC	22	4	88	Rale Gjuric - Haplotech Inc Winnipeg
BCGPA Napus comparison trial ***	DC	22	4	88	BCGPA - Clair Langlois
Regional Flax *	DC	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Green Field Pea *	DC	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Yellow Field Pea *	DC	14	4	56	Alex Fedko - AAFRD-CDC North, Edmonton
Collaborative Lentil Trial (AB/BC Peace Initiative)	DC	8	4	32	SARDA, MARA, BRRG, BCGPA collaboration
Regional 2 Row Barley *	FSJ	17	4	68	Alex Fedko - AAFRD-CDC North, Edmonton
Regional 6 Row Barley (& hulless) *	FSJ	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Oats *	FSJ	14	4	56	Alex Fedko - AAFRD-CDC North, Edmonton
Regional CWRS Wheat (HRSW) *	FSJ	35	4	140	Alex Fedko - AAFRD-CDC North, Edmonton
Regional GP Wheat(General Purp./CPS/SWS) *	FSJ	13	4	52	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Triticale *	FSJ	6	4	24	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Durum Wheat	FSJ	10	4	40	Alex Fedko - AAFRD-CDC North, Edmonton
Prairie Wide Napus CPT (Herbicide Systems)	FSJ	22	4	88	Rale Gjuric - Haplotech Inc Winnipeg
BCGPA Napus comparison trial ***	FSJ	22	4	88	BCGPA - Clair Langlois
Regional Flax *	FSJ	9	4	36	Alex Fedko - AAFRD-CDC North, Edmonton
Regional Green Field Pea *	FSJ	9	4		Alex Fedko - AAFRD-CDC North, Edmonton
Regional Yellow Field Pea *	FSJ	14	4	56	Alex Fedko - AAFRD-CDC North, Edmonton
Collaborative Lentil Trial (AB/BC Peace Initiative)	FSJ	8	4	32	SARDA, MARA, BRRG, BCGPA collaboration

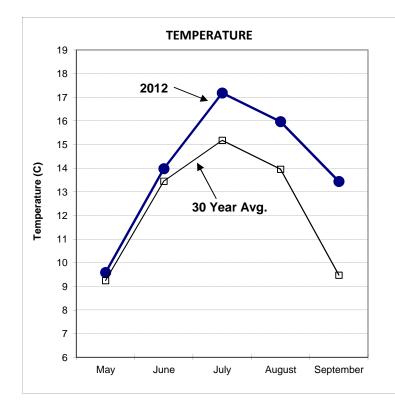
Data used for plant breeding and variety registration support, thus support for future new materials for future reports...

Varietal Development	Site	Varieties	Replicates	Plots	Source
Barley					
Western 2-Row Co-op Barley	DC	36	3	108	Dr. Tom Zatorski - U of S Malt B Prgm
Western 6-row Co-op Barley	DC	20	3	60	Dr. Ana Badea - Ag Canada - Brandon
B-Y4 Barley Co-op - Grain Yields **	DC	25	3	75	Pat Juskiw/J. Nyachiro - AAFCDC Lacombe
Viterra - 2-Row Barley Marketing **	DC	18	3	54	Jim Anderson - Viterra (Calgary)
Beans					
Dry Bean Variety Adaptation Trial	DC	16	4	64	Dr. Parthiba Balasubramanian - AgCan Lethr.
Dry Bean Variety Adaptation Trial	FSJ	16	4	64	Dr. Parthiba Balasubramanian - AgCan Lethr.
Camelina					
Ag Canada - Camelina Biodiesel Feedstock **	DC	14	4	56	Dr. Christina Eynck, AAFC-Saskatoon
Ag Canada - Camelina Biodiesel Feedstock **	FSJ	14	4	56	Dr. Christina Eynck, AAFC-Saskatoon
Canola					
Ag Canada - Prelim/Public Rapa Co-op **	DC	21	3	63	Dr. Kevin Falk, Ag Canada - Saskatoon, SK
Ag Canada - Prelim/Public Rapa Co-op **	FSJ	21	3	63	Dr. Kevin Falk, Ag Canada - Saskatoon, SK
DL-Seed Napus Trial 301 **	DC	25	3	75	Dr. Kevin McCallum - DL Seeds, MB
DL-Seed Napus Trial 302 **	DC	25	3	75	Dr. Kevin McCallum - DL Seeds, MB
DL-Seed Napus Trial 900 **	DC	25	3	75	Dr. Kevin McCallum - DL Seeds, MB
PIONEER - Napus CCNSR-351(early season) **	DC	16	4	64	Jason Nordstrom, Pioneer Hi-Bred, Edmonton
PIONEER - Napus CCNSR-351(early season) **	FSJ	16	4	64	Jason Nordstrom, Pioneer Hi-Bred, Edmonton
WCC/RRC Napus NS1 Co-op **	DC	25	3	75	Raymond Gadoua - Canola Council
WCC/RRC Napus NS2 Co-op **	DC	20	3	60	Raymond Gadoua - Canola Council
WCC/RRC Napus NS3 Co-op **	DC	20	3	60	Raymond Gadoua - Canola Council
Viterra Napus Herbicide Systems CPC CL/LL **	DC	9	3	27	Tim Ferguson / Daryl Rex - Viterra, Saskatoon
Viterra Napus Herbicide Systems CPC RR **	DC	25	3	75	Tim Ferguson / Daryl Rex - Viterra, Saskatoon
Viterra Napus Short-Season RR **	DC	5	3	15	Tim Ferguson / Daryl Rex - Viterra, Saskatoon
Viterra Napus Short-Season RR **	FSJ	5	3	15	Tim Ferguson / Daryl Rex - Viterra, Saskatoon

* some entries sourced & entered by BCGPA

** fee-for-service research

*** all entries sourced by BCGPA or their inclusion requested by local agri-business


Varietal Development continued	Site	Varieties	Replicates	Plots	Source
Flax				•	
Early Flax CFET #1 Co-op	DC	36	3	108	Dr. Scott Duguid - MRC Morden
Early Flax CFET #1 Co-op	FSJ	36	3	108	Dr. Scott Duguid - MRC Morden
Early Flax CFET #3 Co-op	DC	36	3	108	Dr. Scott Duguid - MRC Morden
Short-Season Flax Co-op	DC	25	3	75	Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-01 DC	DC	25	2	50	Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-02 DC	DC	25	2		Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-03 DC	DC	25	2		Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-04 DC	DC	25	2	50	Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-05 DC	DC	25	2	50	Michelle Beaith, Viterra, Saskatoon, SK
Flax - NorFlax-Prject - CCF120-06 DC	DC	25	2	50	Michelle Beaith, Viterra, Saskatoon, SK
Oat			1		
Advantage® Oat Private Co-op B **	DC	30	3	90	Dr. Jim Dyck - Advantage
Oat Private Co-op (Prelim-L) **	DC	175	1		Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Oat Co-op (BOAT) **	DC	49	3	147	Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Western Oat Co-op (WCORT)	DC	30	3		Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Oat Organic Co-op (BORG) - hand weeded **	DC	25	3	75	Dr. Jennifer Mitchell-Fetch - AAFC Winnipeg
Pea			0		
"Peace Field Pea Project" PYT06	FSJ	36	2	72	Dr. Dengjin Bing - Ag Canada - Lacombe
"Peace Field Pea Project" PYT07	FSJ	36	2	72	Dr. Dengjin Bing - Ag Canada - Lacombe
Field Pea - Short-Season - Co-op "C"	FSJ	13	3	39	Dr. Dengjin Bing - Ag Canada - Lacombe
	100	10	5	55	Dr. Dengjin Ding Ag Canada Lacombe
T-Y41 Triticale Grain Pre-Co-op	DC	19	3	57	Dr. Mazen Aljarrah - AAFC Lacombe
T-Y42 Triticale Grain Pre-Co-op	FSJ	19	3	57	Dr. Mazen Aljarrah - AAFC Lacombe
Triticale Registration Co-op Test	DC	20	4	80	Dr. Harpinder Randhawa - AAFC - Lethbridge
Wheat	DC	20	4	00	DI. Halpindel Kandhawa - AAI C - Lethonoge
Early Wheat Parkland A1 (3m plots) **	FSJ	100	2	200	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat Parkland A2 (3m plots) **	FSJ	100	2		Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat Parkland A3 (3m plots) **	FSJ	30	3	90	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat P8FHB3 (3m plots) **	FSJ	120	1	120	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat PR8FHB4 (3m plots) **	FSJ	80	1	80	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat PR83AWM (3m plots) **	FSJ	180	1	180	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Early Wheat PRRDH (3m plots) **	FSJ	150	1	150	Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg Dr. Gavin Humphreys/S.Fox - AAFC Winnipeg
Parkland 'B' Wheat Private Co-op (U of A) **	FSJ	25	3	75	Dr. Dean Spaner - U of A, Edmonton, AB
Parkland 'TGAYT' Wheat Co-op (U of A) **	FSJ	20	3	60	Dr. Dean Spaner - U of A, Edmonton, AB
Parkland 'C' Wheat Co-op	DC	36	3		Alanna Olson - AAFC Beaverlodge
Parkland 'C' Wheat Co-op	FSJ	36	3	108	Alanna Olson - AAFC Beaverlodge
Viterra Wheat Marketing **	DC	25	3	75	Jim Anderson - Viterra (Calgary)
Agronomic Trials		20	3	75	Jim Anderson - Viterra (Calgary)
3		44	4		Alex Mature Deven Oreg Online on Online
Bayer - Flea Beetle Control - Seed-Trt **	DC	11	4		Alex Matus - Bayer CropScience, Calgary
Bayer - Flea Beetle Control - Seed-Trt **	FSJ	11	4	44	Alex Matus - Bayer CropScience, Calgary
BeckerUnderwood-Flea Beetle Seed Trt **	DC	7	6	42	Piran Cargeeg - Becker Underw Saskatoon
BeckerUnderwood-Flea Beetle Seed Trt **	FSJ	7	6	42	Piran Cargeeg - Becker Underw Saskatoon
Cereal Rust Plots (individual plots)	DC	5	1	5	Tom Fetch - AAFC Winnipeg
Spring Wheat Seeding Rate Study	DC	25	4		BCGPA (Dr. O'Donovan input-AAFC Lacombe)
Spring Wheat Seeding Rate Study	FSJ	25	4		BCGPA (Dr. O'Donovan input-AAFC Lacombe)
PV Seeds - Spinach & Raddish Seed Yield**	FSJ	7	2	14	Jay Schafer - Pop Vriend Seeds USA-Wash.

**fee-for-service research

Site: FSJ	= Vic Blanchette, Fort St. John, BC
DC	= School District #59, (Hudson School Farm property), Dawson Creek, BC

Sources:	AAFRD AAFC ARECA MRC UofS BCGPA	 Alberta Agriculture, Food and Rural Development Agriculture and Agri-Food Canada Agricultural Research and Extension Council of Alberta Morden Research Centre, Agriculture & Agrifood Canada, Morden, Manitoba University of Saskatchewan, Saskatoon, Saskatchewan British Columbia Grain Producers Association
----------	--	---

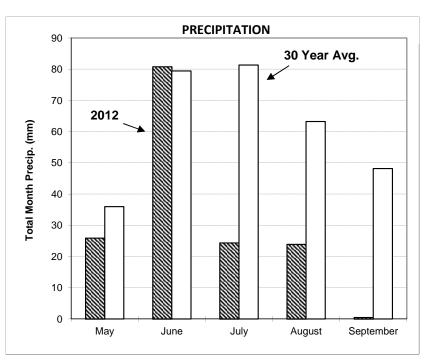
Dawson Creek Weather Information 2012

TEMPERATURE

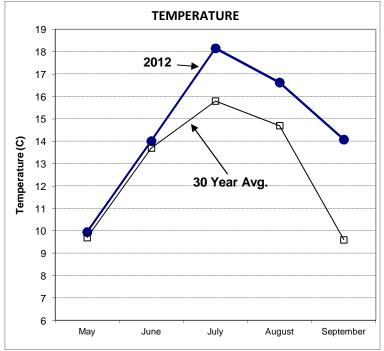
Month	Monthly Avg. Temp. (C)	Temp.* 30 year Avg. (C)
Мау	10	9
June	14	13
July	17	15
August	16	14
September	13	9

Frost Events: May 19 -6.35 September 15 -2.2 May 20 -1.8

Killing Frost (-2.2 C) Free Period: 121 May 19 - September 15


Accumulated Growing Degree Days: 2012: 1264 1994-2012 Average: 1169

* 30 year average DC from 1968-1997 Source: Environment CANADA


PRECIPITATION

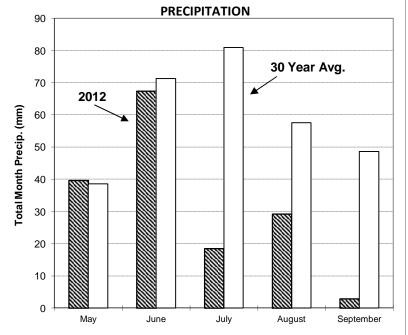
Month	Monthly Precipitation (mm)	Precipitation * 30 year Avg. (mm)
Мау	26	36
June	81	79
July	24	81
August	24	63
September	1	48

Data is provided by an on site weather station maintained by the Canadian Wheat Board and the BC Grain Producers Association.

Fort St. John Weather Information 2012

TEMPERATURE

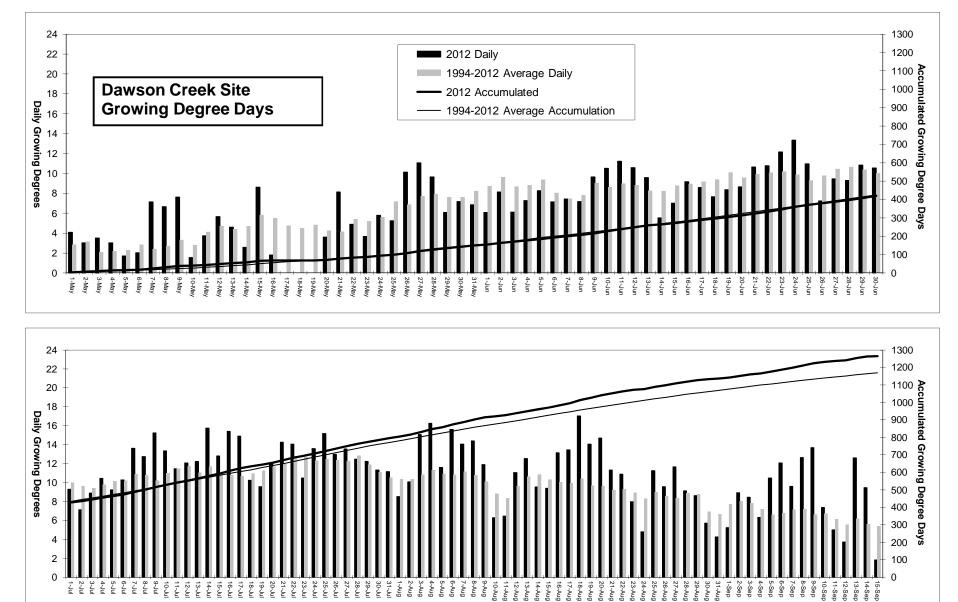
Month	Monthly Avg. Temp. (C)	Temp.* 30 year Avg. (C)
May	10	10
June	14	14
July	18	16
August	17	15
September	14	10

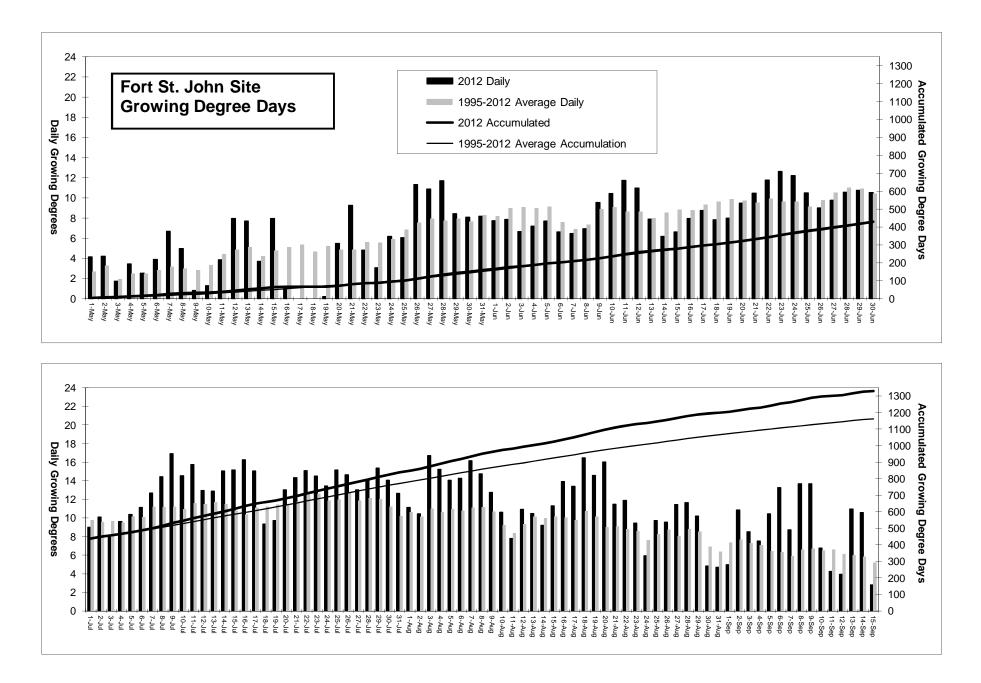

 Frost Events:
 May 18
 -2.5
 September 15
 -0.8

 May 19
 -3.7
 September 16
 -2.7

Killing Frost (-2.2 C) Free Period: 122 May 19 - September 16

Accumulated Growing Degree Days: 2012: 1329 1994-2012 Average: 1162


* 30 year average FSJ from 1968-1997 source: Environment CANADA


PRECIPITATION

Month	Monthly Precipitation (mm)	Precipitation * 30 year Avg. (mm)
Мау	40	39
June	67	71
July	19	81
August	29	58
September	3	49

Data is provided by an on site weather station maintained by the Canadian Wheat Board and the BC Grain Producers Association.

Page 40

List of Certified Seed Distributors

Alliance Seed Corp.

www.allianceseed.com

Bayer CropScience Inc. Canada #100, 3131-114 Ave. SE Calgary, AB T2Z 3X2 Toll-Free :1(888) 283-6847 Phone:(403)-723-7400 www.bayercropscience.ca

Brett - Young Seeds Ltd.

P.O. Box 99, St. Norbert Postal Station, Winnipeg, MB R3V 1L5 Toll-Free: 1(800) 665-5015 www.brettyoung.ca

Canseed Ltd.

R.R. #1, Box 1155 Stettler, AB T0C 2L0 Phone: (403)-742-4091 Fax: (403)-742-0621

Canterra Seeds Ltd.

201-1475 Chevier Blvd. Winnipeg, MB R3T 1Y7 Phone: (204)-988-9750 Fax:(204) 487-7682 www.canterra.com

Cargill Ltd.

P.O. Box 5900 300-240 Graham Avenue Winnipeg, MB R3C 4C5 Phone:(204)-947-0141 Fax:(204)-947-6444 www.cargill.ca

DL Seeds

P.O. Box 2499 Morden, MB R6M 1C2 Phone: (204)-331-2361 Fax:(204)-325-8052 www.dlseeds.ca

FP Genetics

426 McDonald Street Regina, SK S4N 6E1 Toll Free: 1(877) 791-1045 Fax: 1(877) 791-1046 www.fpgenetics.ca

Hadland Seed Farm Ltd.

8161 253 Rd, Baldonnel BC,V0C 1C0 Phone: (250)-789-3646

Mastin Seeds

RR #1 Sundre, AB T0M 0X0 Phone:(403)-556-2609 Fax: (403)-507-2609 www.mastinseeds.com

Monsanto Canada Inc (DEKALB)

900 - 1 Research Road Winnipeg, MB R3T 6E3 Toll-Free:1(800) 667-4944 Phone: (204)-985-1000 www.monsanto.ca

Pioneer Hi-Bred Ltd. (DuPont)

P.O. Box 730, 7398 Queen's Line Chatham, ON N7M 5L1 Phone: (519)-352-6350 www.pioneer.com/canada

Richardson International

2800 One Lombard Place, Winnipeg, MB R3B 0X8 Toll Free:1-866-217-6211 Phone: (204)-934-5961 http://www.richardson.ca

Saskatchewan Pulse Growers

104 - 411 Downey Road Saskatoon, SK S7N 4L8 Phone: (306)-668-5556 Fax: (306)-668-5557 www.saskpulse.com

SeCan Association

400 - 300 Terry Fox drive Kanata, ON K2K 2E2 Toll-Free:1(800)-665-7333(Western Canada) www.secan.com

Seed Depot Corp.

P.O. Box 208 Pilot Mound, MB R0G 1P0 Phone: (204)-825-2000 www.seeddepot.ca

SeedNet Inc.

John Huvenaars Phone: (403) 725-2126 http://www.seednet.ca

Solick Seeds Ltd.

Po Box 97 Halkirk, AB T0C 1M0 Phone: (403)-884-2358 Fax: (403)-884-2360

Syngenta Seeds Canada Inc.

140 Research Lane Research Park Guelph, Ontario N1G 4Z3 Toll-Free:1(888)-368-4211 Phone:(519)-836-5665 www.syngenta.ca

T & L Seeds

P.O. Box 216 North Battleford, SK S9A 2Y1

Viterra

P.O. Box 6600 CanWest Global Place 201 Portage Avenue Winnipeg, MB R3C 3A7 Toll Free:1(866) 569-4411 Fax: 1(866) 310-4156 Dawson Creek Phone:(250)-782-9264 Fort St.John Phone:(250)-785-3445 www.viterra.ca

Wedge Farms(Smart&Natural Foods Itd)

box 276 363 River Road Arborg, MB R0C 0A0 toll free: 1(877) 738-2144 fax: 1(204)-376-2201 www.mysmartfoods.com

Wagon Wheel Seed Corp.

Box 229 Churchbridge, SK S0A 0M0 Phone: (306)-896-2236 Fax: (306)-896-2696 http://www.wagonwheelseeds.sk.ca

Photo (above): Cereal research plots at Dawson Creek's research farm around early August 2012; barley to the left, wheat to the right, oats far left. Canola research can be seen at the far back (south end). 2012 was a year of good moisture initially after planting but then almost no significant moisture after July 1st with higher than normal heat and only one main rain event in mid-August. The longer seasoned crops, mainly canola and flax,

reflect this moisture stress in lower but acceptable yields. The Fort St. John research site faired a little better for moisture (and thus higher yields) likely only because it had more snowfall last winter.

Photo (right): Combining oat plots at Fort St. John, late August 2012, about two weeks ahead of schedule due to an extra 167 Growing Degree Days over the 30 year average GDD.

