CANADA WESTERN RED SPRING WHEAT

As grain yields increase, protein content generally decreases. Some of the newer varieties have both higher protein and grain yield. To control true *loose smut* of wheat only a systemic fungicide will work as the pathogen is found inside the seed. To control the other types of smut (*covered, false loose* and *bunt*) a non-systemic fungicide seed treatment will work as the disease pathogen is on the outside of the seed.

CWRS Whea	t						Yield	l as %	of Kate	epwa	
		awson C	reek			Fort St. J			B.C	. Peace	
	2011 \		2006-2	2011		Yield	2006-2	2011	2011	2006-2	2011
Variety	bus /	% of	Avg.	Station	bus /	% of	Avg.	Station	Avg.	Avg.	Station
	acre	Check	(%)	Years	acre	Check	(%)	Years	(%)	(%)	Years
5603HR	106 a-d	111	105	[4]	100 ij	98	101	[4]	104	101	[8]
5604HR CL	100 a-e	105	97	[3]	108 f-		97	[3]	105	101	[6]
AC Barrie	89 e	93	89	[6]	103 h		102	[6]	97	95	[12]
AC Splendor	101 a-e	106	91	[6]	98 j		91	[6]	101	94	[12]
Alvena	102 a-e	106	98	[5]	110 d-		105	[5]	107	103	[10]
BW433* Δ	106 a-d	112	112	[1]	101 ij		98	[1]	105	105	[2]
BW901* Δ	106 a-d	112	112	[1]	115 c-		112	[1]	112	112	[2]
Carberry	102 a-e	107	111	[3]	114 c-	0	115	[3]	109	111	[6]
CDC Abound	113 ab	118	110	[6]	126 b	0	111	[6]	121	117	[12]
CDC Alsask	107 a-d	112	102	[6]	117 cc		107	[6]	113	108	[12]
CDC Go	112 ab	117	102	[6]	118 cc	le 115	108	[6]	116	109	[12]
CDC Kernen	101 a-e	106	101	[3]	116 c-	f 113	113	[3]	109	107	[6]
CDC Osler	100 а-е	105	101	[6]	110 d-	h 108	105	[6]	106	104	[12]
CDC Stanley	107 abc	113	105	[3]	115 c-	g 112	105	[3]	112	109	[6]
CDC Thrive	105 a-d	111	99	[3]	118 cc	le 115	114	[3]	113	107	[6]
CDC Utmost	106 a-d	111	104	[3]	116 c-	f 114	111	[3]	112	109	[6]
Glenn	101 a-e	106	103	[3]	108 f-	i 105	104	[3]	105	104	[6]
Goodeve	103 a-e	108	102	[5]	109 e-	h 107	106	[5]	108	104	[10]
Harvest	102 a-e	107	92	[6]	111 d-		102	[6]	107	100	[12]
Infinity	116 a	121	105	[6]	122 b		110	[6]	120	112	[12]
Katepwa	95 cde		100	[6]	102 h		100	[6]	100	100	[12]
Muchmore	110 abc		107	[3]	119 bo		115	[3]	116	112	[6]
Shaw	105 a-d	110	103	[3]	113 c-	0	111	[3]	110	106	[6]
Snowbird**	97 b-e	101	92	[6]	106 g·		102	[6]	103	98	[12]
Snowstar**	107 abc	-	95	[6]	113 c-		106	[6]	111	103	[12]
Stettler	108 abc		119	[4]	126 b	-	118	[4]	118	118	[8]
Superb	115 a	121	111	[6]	135 a	-	120	[6]	126	115	[12]
Unity	111 abc		108	[4]	118 cc		111	[4]	116	112	[8]
Vesper	91 de	96	100	[2]	106 g		100	[2]	100	102	[4]
WR859 CL	107 a-d	112	107	[4]	104 h	ij 101	102	[4]	107	104	[8]
LSD (P=.05) =	8.717				5.36						
CV value (%) =	5.9				3.37						
	0.0				0.07						

Katepwa - check variety

* first year tested, very limited data available ** CWHWS Canadian Western Hard White Spring Wheat

 Δ denotes materials not registered, very limited data available

WR859 CL, CDC Abound and 5604HR CL are Clearfield® tolerant varieties

Unity is a Wheat Midge Resistant variety

Means followed by the same letter do not significantly differ (P=.05, LSD)

	CWRS Wheat	t									\	/ar	iety	y Descriptions
		В.(C. Pea	ce Aver	ages			Alt	oerta A	gdex 1	00/32	2		
				5 - 2011						tance				
		Days to		Bushel	Ker	nel	0		uc		ot	bu		
		Maturity	Height	Weight	Prote	in %	Lodging	ut	Common Bunt	st pe	Leaf Spot	Sprouting	m	
	Variety	+/- check	cm	lbs/bu	+/- c	heck	Lod	Loose Smut	Comr Bunt	Stripe Rust	Lea	Spr	FHB	Distributor
Ŀ	5603HR	0.9	78	63	1	[8]	G	G	G	Р	F	хх	F	Viterra
-	5604HR CL	-7.7	81	64	0	[6]	G	VG	VG	XX	Ρ	G	G	Viterra
	AC Barrie	-2.2	77	64	1	[12]	G	G	F	VP	Ρ	G	F	SeCan
	AC Splendor	-3.7	76	63	1	[12]	F	F	F	F	F	F	Ρ	SeCan
-	Alvena	-1.7	80	63	0	[10]	G	G	G	F	XX	F	Ρ	SeCan
-	<i>BW4</i> 33* ∆	-1.7	115	65	-1	[2]	XX	XX	XX	XX	XX	XX	XX	Syngenta Seeds Canada
•	<i>BW901</i> * ∆	-2.2	108	65	-1	[2]	XX	XX	XX	XX	XX	XX	XX	Canterra Seeds
-	Carberry	-1.1	75	65	0	[6]	VG	G	G	G	Ρ	F	G	SeCan
-	CDC Abound	-1.8	74	65	0	[12]	G	F	F	Ρ	Ρ	G	Ρ	Viterra
•	CDC Alsask	-2.3	80	63	0	[12]	F	G	G	F	Ρ	F	Р	Viterra
	CDC Go	-3.3	73	64	0	[12]	G	Ρ	G	G	Ρ	Ρ	Р	Public Variety
-	CDC Kernen	0.0	86	65	0	[6]	G	VG	F	F	F	F	F	Canterra Seeds Seeds
	CDC Osler	-3.2	75	63	0	[12]	G	G	G	F	F	F	VP	Public Variety
	CDC Stanley	-2.2	82	64	-1	[6]	G	G	VP	XX	F	VG	Р	Viterra
-	CDC Thrive	-3.2	84	64	0	[6]	G	G	F	F	F	Ρ	Ρ	SeCan
•	CDC Utmost	-0.6	80	64	0	[6]	G	Ρ	VP	F	F	G	Р	FP Genetics
-	Glenn	1.2	81	66	1	[6]	VG	F	F	G	F	F	F	Canterra Seeds
	Goodeve	-2.6	82	63	0	[10]	VG	G	Ρ	F	Ρ	G	VP	Alliance Seeds Corp.
-	Harvest	-3.2	76	65	0	[12]	VG	G	F	G	Ρ	VG		FP Genetics
	Infinity	-1.2	77	63	0	[12]	G	G	F	Ρ	Р	G	VP	Canterra Seeds
	Katepwa	0.0	82	63	0	[12]	F	G	G	Р	Ρ	F	F	SeCan
-	Muchmore	-0.8	71	65	-1	[6]	VG	G	G	G	Ρ	F	Ρ	FP Genetics
-	Shaw	-3.1	86	65	0	[6]	G	Ρ	G	ΧХ	Ρ	G	Ρ	SeCan
-	Snowbird**	-1.0	79	64	0	[12]	G	G	F	Ρ	Ρ	G	Ρ	FP Genetics
-	Snowstar**	-3.5	72	65	0	[12]	XX	Ρ	Ρ	Р	F	F	Ρ	SeCan
I-	Stettler	0.3	76	65	0	[8]	G	G	G	G	Ρ	G	Ρ	SeCan
I-	Superb	-1.5	75	65	0	[12]	G	F	G	VP	Ρ	G	Ρ	SeCan
I-	Unity	-1.6	77	64	0	[8]	G	Ρ	VG	Р	Ρ	G	Ρ	SeCan
-	Vesper	-3.9	91	65	0	[4]	VG	F	Р	VP	G	F	G	SeCan
	WR859 CL	-4.4	72	64	0	[8]	G	VG	VG	F	Ρ	ХХ	G	Richardson Intl.

* first year tested, very limited data available

VG = very good, G = good, F = fair, P = Poor, VP = very poor

XX = insufficient data

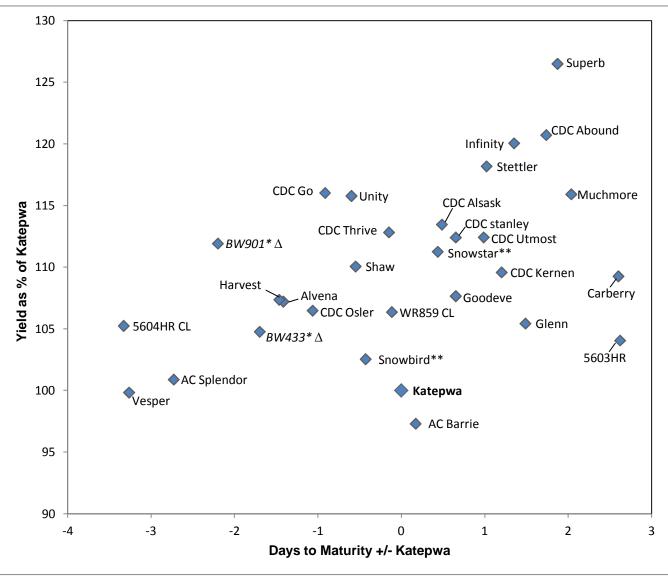
** CWHWS = Canadian Western Hard White Spring Wheat Δ denotes materials not registered, very limited data available

WR859 CL, CDC Abound AND 5604HR CL are Clearfield® tolerant varieties

 $\ensuremath{\textbf{Unity}}$ is a Wheat Midge Resistant variety

CIMPS Wheet

Protected by Plant Breeders' Rights


Katepwa - check variety

Average protein for **Katepwa** is **13 %** Average maturity for **Katepwa** is **104 days**

Mania (n. Danamin (i.e.

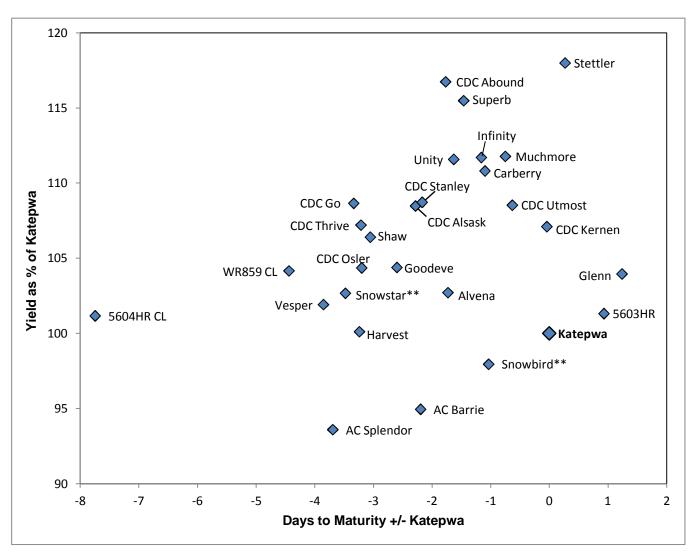
CWRS Wheat

Regional Variety Performance

Average maturity for Katepwa is 117 days for 2011

* first year tested, very limited data available

** CWHWS Canadian Western Hard White Spring Wheat


 $\Delta\,$ denotes materials not registered, very limited data available

WR859 CL, CDC Abound and 5604HR CL are Clearfield® tolerant varieties

Unity is a Wheat Midge Resistant variety

CWRS Wheat

Regional Variety Performance

Average maturity for Katepwa is 104 days

** CWHWS Canadian Western Hard White Spring Wheat

CANADA WESTERN SOFT WHITE SPRING WHEAT

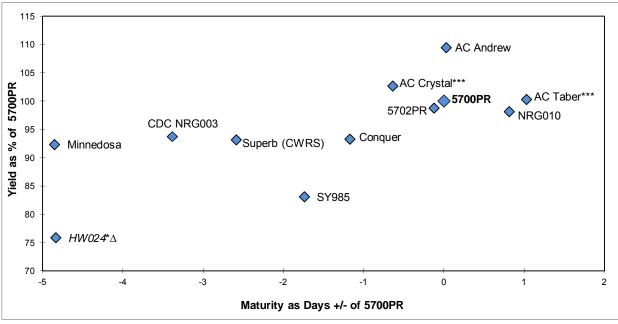
All current Canada General Purpose Spring varieties (CPS and CWSWS are in this class) should be treated with a systemic fungicide seed treatment to control smut. Avoid deep seeding General Purpose wheats. Note the long maturity periods required for the production of currently available CWSWS wheat varieties. Seeding rates for all classes of wheat covered by the new class "General Purpose" should be increased 20 to 25% due to the larger kernel size.

[For testing purposes, CPS and CWSWS wheats are grown together in the same trial and compared against a CWRS]

CPS / CW	'SWS W	hea	t							Yield	as 🤋	% of 570	0PR	
			C	Dawson (Creek			I	Fort St. Jo	ohn		В.С	C. Peac	e
		20	י 11C	Yield	2006 -	2011		2011 `	Yield	2006 -	2011	2011	2006	-2011
Variety	Туре	bus /		% of	Avg.	Stn.	bus /	/	% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
570000		404		100	400	101	4.40	- 1-	400	400	101	400	400	1401
5700PR	CPS-red	131		100	100	[6]	143		100	100	[6]	100	100	[12]
5702PR	CPS-red	136	ab	103	99	[5]	135		94	105	[5]	99	102	[10]
AC Andrew	CWSWS	147	а	112	107	[5]	153	а	107	112	[5]	109	109	[10]
AC Crystal***	CPS-red	136	ab	104	77	[5]	145	ab	101	90	[5]	103	83	[10]
AC Taber***	CPS-red	130	b	99	82	[6]	145	ab	102	91	[6]	100	86	[12]
CDC NRG003	CWGP	127	b	97	94	[2]	129	С	90	94	[2]	94	94	[4]
Conquer	CPS-red	126	b	96	92	[2]	130	С	91	87	[2]	93	90	[4]
<i>HW0</i> 24* ∆	CWHWS	99	d	76	76	[1]	109	е	76	76	[1]	76	76	[2]
Minnedosa	CPS-white	126	b	96	91	[2]	127	С	89	90	[2]	92	91	[4]
NRG010	CPS-white	132	b	101	99	[3]	137	bc	96	97	[3]	98	98	[6]
Superb	CWRS	121	b	93	99	[4]	134	bc	94	100	[4]	93	99	[8]
SY985 (HY985)	CPS-red	110	с	84	91	[2]	117	d	82	89	[2]	83	90	[4]
LSD (P=.05) = CV value (%) =		10.08 5.51		-			8.0 4.1		_					

* first year tested, very limited data avaliable

CPS / CWSWS Wheat


 $\Delta\,$ denotes materials not registered, very limited data available

*** denotes semi-dwarf stature

Conquer is a Varietal Blend

2011

Regional Variety Performance

 Δ denotes materials not registered, very limited data available

Average maturity for 5700PR is 122 days for 2011

CPS/CWSWS Wheat

Variety Descriptions

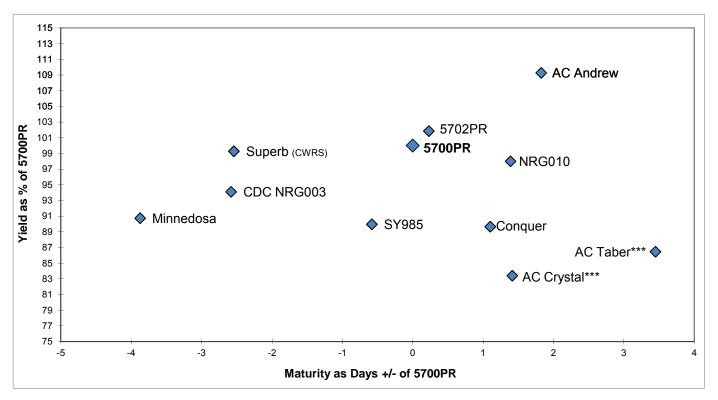
			B.C. Peace Averages 2006-2011					Da	ata fror		erta Ag stance		100/3	2	
	Variety	Туре	Maturity in days +/- check	Height	Bushel Weight Ibs/bu	Kerr Prote +/- ch	in %	Lodging	Loose Smut	nor	a	Leaf Spot	Sprouting	FHB	Distributor
	5700PR	CPS-red	0	67	64	0	[12]	VG	Р	G	Р	Ρ	Ρ	VP	Viterra
	5702PR	CPS-red	0	73	63	0	[10]	G	Р	F	Р	F	F	Р	Viterra
	AC Andrew	CWSWS	2	72	64	-1	[10]	VG	VP	Р	F	G	F	VP	SeCan
	AC Crystal***	CPS-red	1	67	64	1	[10]	G	F	VG	VP	F	Р	VP	SeCan
	AC Taber***	CPS-red	3	67	64	0	[12]	G	Р	VG	VP	F	Р	VP	SeCan
	CDC NRG003	CWGP	-3	81	64	0	[4]	G	G	VG	XX	VP	ΧХ	VP	Canterra Seeds
	Conquer	CPS-red	1	87	64	1	[4]	G	Р	G	ХХ	F	ΧХ	Р	Canterra Seeds
	HW024*∆	CWHWS	-5	96	65	0	[2]	XX	XX	XX	ΧХ	XX	ΧХ	ΧХ	SeCan
	Minnedosa	CPS-white	-4	84	64	0	[4]	G	F	G	G	Р	G	Р	SeCan
	NRG010	CPS-white	1	79	63	0	[6]	G	VG	VG	VG	Р	ΧХ	VP	Canterra Seeds
	Superb	CWRS	-3	74	65	1	[8]	G	F	G	VP	Р	G	Р	SeCan
-	SY985(HY985)	CPS-red	-1	79	65	1	[4]	G	VG	G	ХХ	F	ХХ	F	Viterra

* first year tested, very limited data available

5700PR - check variety

Protected by Plant Breeders' Rights

Overall average maturity for **5700PR** is **105** days. Overall average protein for **5700PR** is **11.7** % VG = very good, G = good, F = fair, P = Poor, VP = very poor XX = insufficient data


∆ denotes materials not registered, very limited data available *** denotes semi-dwarf stature

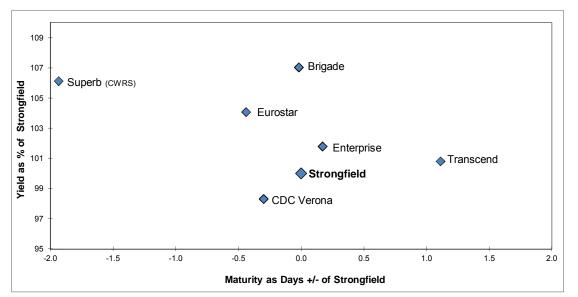
Numbers in square brackets [] is number of station years collected for protein

CPS / CWSWS Wheat

Regional Variety Performance

2006-2011

Durum is a type of wheat which is used to make pasta products (macaroni, spaghetti, etc.) and Canada has become a world leader in quality durum. Durum plant breeding within Canada is also moving toward even higher protein content and is developing a brand new category of high gluten strength durum for a specialty pasta market. However, durum requires a long growing season and high heat, two things the Peace River region is not known for having. In the past, durum production has been concentrated in the southern parts of the Canadian prairies.


However, a few producers in northwestern Alberta have had success growing the crop and for this reason it has been tested here in the B.C. Peace. Often surprises arise in our northern long-daylight region and so it was worth investigating durum in a limited fashion. Most varieties of durum wheat currently available are suggested by literature to have approximately 10 days later maturity than CWRS wheat, but this may not be proving to be the case locally but was in 2011 (a very wet & late year). Durum should thus not be grown in large acreage within the B.C. Peace River region for grain production until more is understood about its agronomics and interest develops among the grain buyers to purchase the end product from the region - admittedly a vicious circle of acceptance and trial and error. Therefore, *caution* should be taken when attempting to grow durum in the B.C. Peace region, and *disclosure of this data is currently not a recommendation to grow durum in the Peace.*

It appears, however, that the B.C. Peace River region has one really big advantage in growing durum, as it would seem we can grow it free of fusarium, a major problem in most durum growing regions. For these reasons data so far collected within the B.C. Peace region has been disclosed as it appears that durum could hold some economic promise to our region in years to come - assuming a buyer/market develops. The test years 2009 and 2010 unfortunately were years of severe drought and poor yield potentials, but compared to other wheat yields over the same period of time at the same testing locations, durum was respectable in yield by comparison and even seemed to survive the drought better than other wheat types. 2011 was a very wet & late year but did not change its promising outlook as a new viable crop-type for our region, noting however that if a normal killing frost would have occurred it would have been bad news for anything later than a CWRS wheat no matter how many days later.

Durum Whe	eat							Yield	as %	6 of Str	ongfie	eld
			Dawson (Fort St. J	ohn		В.С	C. Peac	e
		2011	Yield	2009 -	2011	2011	Yield	2009 -	2011	2011	2009-	-2011
Variety	Туре	bus / acre	% of check	Avg. (%)	Stn. Yrs.	bus / acre	% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
Brigade	CWD	129 a	106	101	[3]	123 b	108	105	[3]	107	103	[6]
CDC Verona	CWD	120 b	98	97	[3]	111 c	98	108	[3]	98	102	[6]
Enterprise	CWD	125 ab	102	104	[3]	115 c	101	105	[3]	102	105	[6]
Eurostar	CWD	124 ab	101	100	[3]	121 b	107	106	[3]	104	103	[6]
Strongfield	CWD	122 ab	100	100	[3]	113 c	100	100	[3]	100	100	[6]
Superb	CWRS	119 b	98	98	[1]	130 a	115	115	[1]	106	106	[2]
Transcend	CWD	124 ab	102	95	[2]	113 c	100	102	[2]	101	99	[4]
LSD (P=.05) = CV value (%) =		5.34 2.89	_			3.17 1.81						

△ denotes materials not registered, very limited data available * first year tested, very limited data available

Durum Wheat Regional Variety Performance 2011

 Δ denotes materials not registered, very limited data available

Average maturity for Strongfield is 127 days for 2011

Variety Descriptions

Durum Wheat B.C. Peace Averages Data from Alberta Agdex 100/32 2009-2011 Resistance to: Maturity Bushel Kernel Sprouting Spot odging DO Shatter in days Height Weight Protein % oose Bunt Rust eaf EHB Variety Туре +/- check lbs/bu +/- check Distributor cm Brigade CWD 0.3 81 64 -1 [6] G XX Ρ G G F F Ρ Viterra -CDC Verona CWD G XX Ρ G VG Ρ F Ρ Alliance Seed Corp. -0.5 76 64 -1 [6] Enterprise CWD XX Canterra Seeds -1.1 78 65 -1 [6] G Ρ G VG G F Р Eurostar CWD Ρ F [6] G XX VG VG F Р SeCan -1.3 83 65 -1 Strongfield Ρ CWD 0.0 64 0 VG VP F VP SeCan 74 [6] F G G Superb CWRS -1.9 98 66 -3 [2] G XX F G VP Ρ G Ρ SeCan Transcend VP VG F F Ρ CWD 0.6 86 64 0 [4] F XX VG **FP-Genetics** -

first year tested, very limited data available

Strongfield - check variety

Protected by Plant Breeders' Rights

VG = very good, G = good, F = fair, P = poor, VP = very poor

XX = insufficient data

2009-2011

 Δ denotes materials not registered, very limited data available Numbers in square brackets [] is number of station years collected for protein

> Overall average maturity for Strongfield is 111 days. Overall average protein for Strongfield is 14.2 %

Durum Wheat

Regional Variety Performance

109 107 Yield as % of Strongfield 105 Enterprise 🔷 Eurostar Brigade 103 CDC Verona 101 Strongfield 99 Transcend 97 95 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Maturity as Days +/- of Strongfield

Six Row	Barley								Yield	as % d	of AC	Metcal	fe	
			D	awson (Creek			F	Fort St. Jo	ohn		В.0	C. Peac	е
		20	011 Y	ield	2006 -	2011	2	011 ነ	/ield	2006-	2011	2011	2006-	2011
Variety	Туре	bus /		% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
AC Albright	Feed, General	105	d	83	91	[5]	148	d	100	86	[6]	92	89	[11]
AC Lacombe	Feed, General	152	ab	121	103	[5]	187	а	126	102	[6]	124	103	[11]
AC Metcalfe	Malt	126	С	100	100	[5]	148	d	100	100	[6]	100	100	[11]
CDC Anderson*	Malt	140	abc	111	111	[1]	166	bc	112	112	[1]	112	112	[2]
CDC Mayfair	Malt	131	bc	104	102	[4]	163	с	110	95	[4]	107	99	[8]
Celebration	Malt	126	с	100	103	[2]	151	d	102	96	[2]	101	100	[4]
Chigwell	Feed	148	ab	118	104	[4]	176	ab	118	104	[4]	118	104	[8]
Muskwa*	Feed, General	145	abc	115	115	[1]	169	bc	114	114	[1]	115	115	[2]
Stellar-ND	Malt	135	abc	107	100	[4]	150	d	101	84	[5]	104	92	[9]
Sundre***	Feed	156	а	124	102	[5]	184	а	124	111	[6]	124	106	[11]
Trochu	Feed, General	155	а	124	109	[5]	182	а	123	101	[6]	123	105	[11]
Vivar**	Feed	153	ab	121	105	[5]	181	а	122	103	[6]	122	104	[11]
LSD (P=.05) =		14.26					9.37							
CV value (%) =		7.09)				3.88	8						

Two Row	Barley								Yield	as % c	of AC	Metcal	fe	
			Daw	son Cre	ek			For	t St. Johi	n		В.С	C. Peac	е
		20	011 Yi	ield	2006 -	2011	2	2011 Y	′ield	2006-2	2011	2011	2006-2	2011
Variety	Туре	bus /		% of	Avg.	Stn.	bus /		% of	Avg.	Stn.	Avg.	Avg.	Stn.
		acre		check	(%)	Yrs.	acre		check	(%)	Yrs.	(%)	(%)	Yrs.
AC Metcalfe	Malt	132	de	100	100	[6]	153	a-f	100	100	[6]	100	100	[12]
Bentley	Malt	134	de	102	102	[4]	150	b-f	98	100	[4]	100	101	[8]
CDC Austenson	Feed	152	a-d	115	115	[4]	166	ab	109	106	[4]	112	110	[8]
CDC Carter ¶	Feed	110	de	104	104	[3]	121	b-f	99	98	[3]	101	101	[6]
CDC Coalition	Feed, General	144	b-e	109	109	[5]	166	ab	109	104	[5]	109	107	[10]
CDC Cowboy	Feed, Forage	142	cde	107	107	[5]	148	c-f	97	91	[5]	102	99	[10]
CDC ExPlus ¶	Malt	99	е	94	94	[2]	110	f	90	85	[2]	92	89	[4]
CDC Kindersley	Malt	137	de	104	104	[2]	150	b-f	98	98	[2]	101	101	[4]
CDC Meredith	Malt	162	ab	123	123	[4]	170	а	112	107	[4]	117	115	[8]
CDC PolarStar*	Malt	134	de	101	101	[1]	139	ef	91	91	[1]	96	96	[2]
CDC Reserve	Malt	135	de	103	103	[4]	151	b-f	99	103	[4]	101	103	[8]
Cerveza	Malt	141	cde	107	107	[3]	158	a-d	104	106	[3]	105	106	[6]
Champion	Feed, General	140	cde	106	106	[6]	144	def	95	104	[6]	100	105	[12]
CONLON	Feed, General	134	de	101	101	[6]	147	c-f	97	85	[6]	99	93	[12]
FB205* ∆	Feed, Forage	136	de	103	103	[1]	153	a-f	100	100	[1]	102	102	[2]
Gadsby	Feed, General	159	abc	120	120	[2]	168	ab	110	107	[2]	115	114	[4]
HB08304* ∆ ¶	Malt	107	de	101	101	[1]	117	c-f	96	96	[1]	99	99	[2]
Major	Malt	146	bcd	110	110	[3]	164	abc	107	99	[3]	109	105	[6]
Merit 57	Malt	166	а	125	125	[5]	170	а	111	107	[5]	118	116	[10]
Newdale	Malt	142	cde	107	107	[6]	155	а-е	102	104	[6]	104	106	[12]
Norman	Malt	131	de	99	99	[3]	139	ef	91	88	[3]	95	94	[6]
Ponoka	Feed, General	148	bcd	112	112	[6]	160	a-d	105	107	[6]	108	109	[12]
TR07728 A	Feed	150	a-d	114	114	[3]	168	ab	110	103	[3]	112	109	[6]
XENA	Feed, General	151	a-d	114	114	[6]	169	а	111	96	[6]	112	105	[12]
LSD (P=.05) = CV value (%) =		11.81 5.87					10.5 4.7							

AC Metcalfe - check variety for 2 row AC Metcalfe - check variety for 6 row Means followed by the same letter do not significantly differ (P=.05, LSD)

* first year tested, very limited data available

** semi-dwarf type

*** smooth-awned type

 \P denotes hulless seed types (bu/ac adjusted for hulless)

 $\Delta\,$ denotes materials not registered, very limited data available

Feed Barle	эy									١	/ar	iety	Descriptions
			B.C. Pe	ace Avei	rages			Alberta	Agdex	100/	32 ir	nfo	
			2006	6-2011	<u> </u>			Res	istance	e to			
		Days to		Bushel	Ker	nel	ğ			tot		FHB Tolerance	
		Maturity	Height	Weight	Prote	in %	Lodging	Loose Smut	False Smut	Root Rot	Scald	Berar	
Variety	Туре	+/- check	cm	lbs/bu	+/- cł	neck	Lo	Νu	Sn	Ro	s S	FHI Tol	Distributor
			Eligible	for Gene	ral Pur	pose G	rades	Only					
AC Albright	6 row	-7.6	77	52	1	[12]	XX	Р	Р	Ρ	F	хх	SeCan
AC Lacombe	6 row	-1.3	74	50	-1	[12]	G	Р	G	Р	Ρ	VP	SeCan
CDC Austenson	2 row	5.4	69	55	0	[8]	G	VP	VG	F	VP	F	SeCan
CDC Coalition	2 row	4.5	69	55	0	[10]	G	VG	VG	F	VP	F	Canterra Seeds
CDC Cowboy	2 row	4.9	91	55	1	[10]	F	Р	G	F	Ρ	G	SeCan
Champion	2 row	3.2	70	55	-1	[12]	G	VP	VG	XX	VP	F	Viterra
Chigwell	6 row	3.9	72	52	0	[8]	G	Р	G	Ρ	G	VP	SeCan
CONLON	2 row	-4.2	71	55	0	[12]	G	F	F	G	VP	G	Seed Depot Corp
FB205* ∆	2 row	18.2	129	58	0	[2]	XX	XX	XX	XX	ΧХ	XX	U of S
Gadsby	2 row	9.8	90	56	0	[4]	F	VG	VG	F	VG	F	SeCan
Muskwa*	6 row	15.1	103	55	-3	[2]	XX	XX	XX	ΧХ	ΧХ	XX	SeedNet
Ponoka	2 row	5.9	71	55	0	[12]	G	VG	VG	F	G	Ρ	SeCan
Sundre***	6 row	4.7	81	54	-1	[12]	G	Р	VG	Ρ	VG	VP	Mastin Seeds, A
TR07728 Δ	2 row	4.6	77	56	0	[6]	XX	Р	VG	G	Ρ	F	Viterra
Trochu	6 row	-4.0	72	52	-1	[12]	G	Р	G	G	F	F	SeCan
XENA	2 row	2.0	70	55	0	[12]	G	Ρ	Р	G	VP	G	Viterra
				Semi-c	lwarf	varieties	S						
Vivar**	6 row	-1.0	70	51	-1	[12]	VG	F	VG	G	F	VP	SeCan
				Hulle	ess va	rieties							
CDC Carter ¶	2 row	1.5	75	63	0	[6]	VG	VG	VG	VP	Ρ	F	SeCan

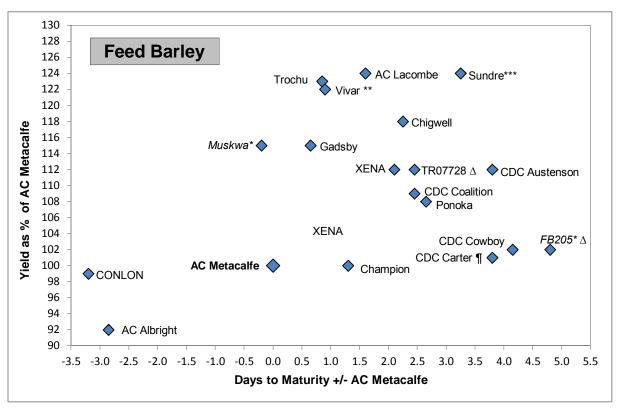
Malt Barle	ey 🛛									١	/ar i	iety	Descriptions
	-		B.C. Pe	ace Aver	ages		A	Iberta	Agdex	: 100/	32 in	fo	
			2006	6-2011				Re	sistance	e to			
		Days to		Bushel	Ker	nel	g			tot		JCe	
		Maturity	Height	Weight	Prote	in %	Lodging	Loose Smut	ut se	Root Rot	pla	erar	
Variety	Туре	+/- check	cm	lbs/bu	+/- cl	neck	Loc	Loose Smut	False Smut	Roc	Scald	FHB Tolerance	Distributor
AC Metcalfe	2 row	0.0	72	55	0	[24]	G	VG	F	F	VP	F	SeCan
Bentley	2 row	0.9	73	53	0	[8]	G	P	G	G	VP	P	Canterra Seeds
CDC Anderson*	6 row	16.3	113	53	-2	[2]	XX	XX	XX	XX	XX	XX	SeCan
CDC ExPlus ¶	2 row	3.3	87	63	-1	[4]	VG	Р	Р	VG	VG	G	U of S
CDC Kindersley	2 row	2.9	86	56	0	[4]	G	VP	VG	F	VP	F	SeCan
CDC Mayfair	6 row	-3.8	69	51	0	[8]	G	VP	G	F	VP	Р	Canterra Seeds
CDC Meredith	2 row	3.9	68	54	-1	[8]	G	VG	G	G	VP	F	SeCan
CDC PolarStar*	2 row	11.1	118	57	-1	[2]	XX	XX	XX	XX	XX	XX	Canterra Seeds
CDC Reserve	2 row	-2.2	71	54	0	[8]	G	VP	Ρ	F	Ρ	Ρ	SeCan
Celebration	6 row	1.6	90	53	0	[4]	VG	VG	VG	Ρ	VP	Ρ	Canterra Seeds
Cerveza	2 row	3.6	77	54	0	[6]	G	VG	VG	F	VP	F	Mastin Seeds, AB
HB08304* ∆ ¶	2 row	15.2	121	65	-2	[2]	XX	XX	XX	XX	XX	XX	U of S
Major	2 row	3.1	74	54	0	[6]	G	VG	G	F	Ρ	F	Viterra
Merit 57	2 row	5.4	72	55	-1	[10]	F	Ρ	VP	F	Ρ	G	Canterra Seeds
Newdale	2 row	0.5	70	54	0	[12]	G	VP	G	G	Ρ	F	FP Genetics
Norman	2 row	-2.2	67	54	1	[6]	G	VP	VP	Ρ	VP	G	FP Genetics
Stellar-ND	6 row	-5.0	76	51	0	[10]	VG	G	G	F	Ρ	F	Canterra Seeds

* first year tested, very limited data available

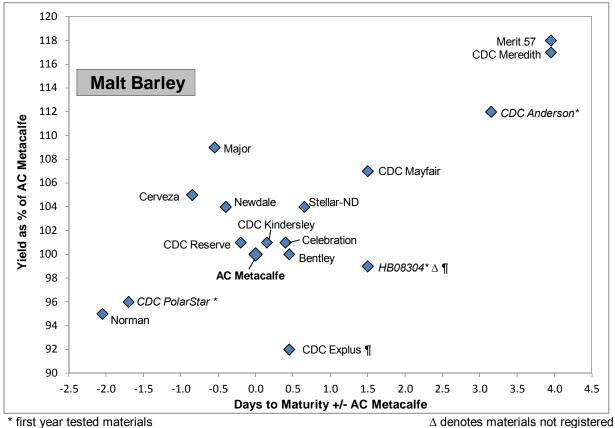
 \P denotes hulless seed types

VG= very good, G = good, F = fair, P = poor, VP = very poor

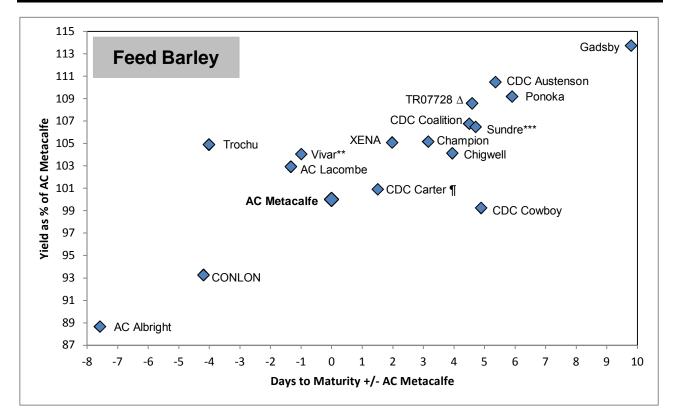
Protected by Plant Breeders' Rights

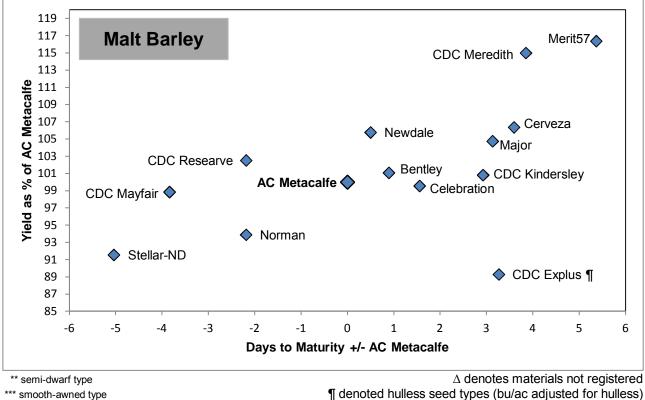

XX = insufficient data Overall aversge maturity for **AC Metcalfe** is **93** days

 $\Delta~$ denotes materials not registered, very limited data available


Overall average protein for AC Metcalfe is 13.7%

AC Metcalfe - check variety


Numbers in square brackets [] is number of station years collected for protein ** semi-dwarf type *** smooth-awned type


Average maturity for AC Metcalfe is **106** days in **2011** (both graphs)

¶ denotes hulless seed types (bu/ac adjusted for hulless) ** semi-dwarf type *** smooth-awned type

Average maturity for AC Metcalfe is 93 days (both graphs)

¶ denoted hulless seed types (bu/ac adjusted for hulless)

ΟΑΤ

Oat is usually a feed crop but some varieties are also suitable for higher value feed and food markets. The milling industry prefers higher protein varieties with plump kernels and lower hull content, while the horse industry prefers white hulled varieties. Hulless oat varieties have excellent feed and food value but need to be stored drier than normal varieties (<12% moisture) and do not flow as well in the bin due to their pubescence (hairs), which seem to "lock together". The exception to this "hairy-hulless" issue is the variety *Gehl*, included for the first time this season, which is a "*low pubescence* hulless" oat aimed at a replacement for rice actually, hence the marketing slogan "prairie rice" for it. A potential contracted market in the Peace River area is a real possibility if agronomics work out for *Gehl*. Yield values for hulless oat varieties are expressed after hull removal, which reduces the seed weight by 20-25% compared to the normal varieties. Keep this ratio in mind while comparing hulless to hulled, however currently (in this report) only the "*low pubescence"* hulless oat *Gehl* is being tested. (See earlier reports for more information on more "traditional hulless" types).

Oat							Yield	as % d	of CD	C Danc	er	
		D	awson C	reek		F	ort St. Jo	ohn		В.0	C. Peac	e
		2011 Y	ïeld	2006-	2011	2011 Y	′ield	2006-	2011	2011	2006-	2011
Variety	Colour	bus / acre	% of check	Avg. (%)	Stn. Yrs.	bus / acre	% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Mustang	White	179 a	112	115	[6]	240 ab	120	117	[6]	116	116	[12]
Bradley	White	127 e	80	89	[3]	217 cd	108	106	[3]	94	98	[6]
CDC Big Brown	Brown	161 abc	101	96	[2]	227 bc	113	110	[2]	107	103	[4]
CDC Dancer	White	159 abc	100	100	[6]	200 d	100	100	[6]	100	100	[12]
CDC Minstrel	White	145 cde	91	94	[5]	230 abc	115	103	[5]	103	98	[10]
CDC Seabiscuit*	Yellow	136 de	86	86	[1]	216 cd	108	108	[1]	97	97	[2]
CDC SO-I	Tan/Brown	167 abc	105	94	[2]	231 abc	115	108	[2]	110	101	[4]
Gehl*	White	43 f	43	43	[1]	65 e	51	51	[1]	47	47	[2]
Lu	Yellow	155 bcd	98	98	[6]	231 abc	115	99	[6]	106	98	[12]
Stride*	White	152 cd	95	95	[1]	212 cd	106	106	[1]	101	101	[2]
Triactor	White	177 ab	111	114	[5]	252 a	126	110	[5]	118	112	[10]
LSD (P=.05) =	15.89				15.67						
CV value (%) =	7.44				5.06						

Means followed by the same letter do not significantly differ (P=.05, LSD)

* first year tested, very limited data available

 $\Delta\,$ denotes materials not registered, very limited data available

* Gehl is a "low pubescence hulless" oat intended for the whole grain oat market (see comment above chart)

Health Benefits Of Oat

Oats are mainly used for livestock feed especially horses and cows and only a small percentage of oat has been traditionally used for human consumption. However, oat are a great source of fibre which consists of more than half as soluble fibres. Oat is high in protein and mineral contents included calcium, iron, magnesium, zinc, copper, manganese, thiamin, folacin, and vitamin E. They are higher in these components than any other whole grain, such as wheat, barley, corn or rice. Rich in Vitamin B1 they can help maintain carbohydrate metabolism. Many scientific researchers have proven that eating oatmeal, oat bran and whole oat products improves both blood pressure and cholesterol levels and furthermore, it also reduces the risk of heart disease, cancer and diabetes. Thus, oat is a significant contributor to the good health of not only livestock but also to good human health as well.

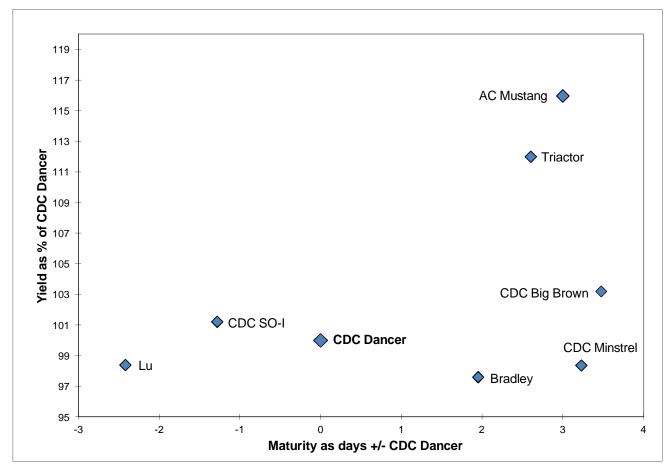
	Oat							Variety Descriptions
			BC Peace	Averag	<u>es</u>	Alb	erta Agd	lex 100/32 info
			<u> 2006 -</u>	- 2011		Tol	erance to:	
			Maturity		Bushel	P	o v	
			as days	Height	Weight	Lodaina	Smuts	
	Variety	Туре	+/- check	cm	lbs/bu	Lo	Sn	Distributor
	AC Mustang	Feed/forage	3.0	87	43	G	F	Mastin Seeds
	Bradley	Milling	2.0	84	40	VC	G VG	SeCan
	CDC Big Brown	Milling	3.5	94	43	G	VG	SeCan
	CDC Dancer	Milling	0.0	82	42	G	VG	FP Genetics
	CDC Minstrel	Milling	3.2	79	42	V	G VG	FP Genetics
	CDC Seabiscuit*	Milling	7.9	110	42	X	K XX	Canterra Seeds
	CDC SO-I	Feed	-1.3	90	40	X	K XX	T & L Seeds
	Gehl* ¶	General Purpose	3.4	114	52	X	K XX	Wedge Farms
	Lu	Feed	-2.4	78	41	G	VG	SeCan
	Stride*	Milling	5.4	119	45	X	K XX	AAFC-Lacombe
-	Triactor	Milling/Feed	2.6	81	40	G	VG	Canterra Seeds Seeds

CDC Dancer - check variety


VG = very good, G = good, F = fair, P = Poor, VP = very poor

Protected by Plant Breeders' Rights

XX = insufficient data * first year tested, very limited data available


 Δ denotes materials not registered, very limited data available

¶ denotes low pubescence hulless

Overall average maturity for CDC Dancer is 101 days for 2011

Oat

Overall average maturity for CDC Dancer is 95 days

Oat for Feed

Oats are often sown to provide fodder in the form of silage or greenfeed. Oats will yield more silage or greenfeed per unit area than any other cereal crop. If managed properly, it can provide 3-4.5 tons of dry matter per acre, or more, of high quality feed containing up to 10 percent protein¹. Many years of comparing yields of oats with barley have shown oats to be superior in the Black and Grey Wooded soil zones¹. Although the percent protein level in barley is higher than in oats, the total amount of protein produced on a given area is higher with oats than with barley¹. Oats have about 22-26 percent hull whereas barley averages about 12-14 per cent hull on a weight basis¹. When choosing a variety, the seed yield as well as the forage yield should be considered, thereby keeping one's options open to harvest as forage or grain¹. We do not currently evaluate oat varieties for forage yield in these tests.

Forage Oat

It is believed by some farmers that one variety might be better than another because it appears "leafier"; however, tests on a number of varieties have shown very little variation in leafiness². Having said that however, such work has not likely included the newer lines of forage oats that are entering the market place now. These new "forage only" lines, such as *CDC Baler* and *Murphy*, have usually been much larger plants in our tests than their traditional counterparts developed for seed quality, which should translate to more biomass to be available for forage production. Note however, that traditionally our oat tests do not lodge and so it is unclear as to whether larger plants are going to be a concern for early lodging in a large-scale forage production practice in our area. Lodging data here is from Alberta Agdex 100/32.

Other Comments

On heavier soils and in the more moist areas, lodging resistance should be considered, but again, traditionally lodging has not been a concern in our BC Peace oat trials, and as mentioned above, lodging data provided here is from Alberta Agdex 100/32. The variation in straw feed quality between oat varieties is insignificant and should not be used as a variety selection criterion³. The average feed values are: protein 4%, fibre 49%, calcium 0.27%, and phosphorus 0.08%³.

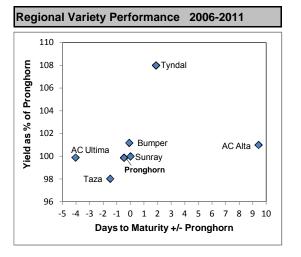
Source^{1,2,3}: Alberta Agriculture, Food, and Rural Development website <u>www.agric.gov.ab.ca</u>

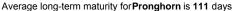
SPRING TRITICALE

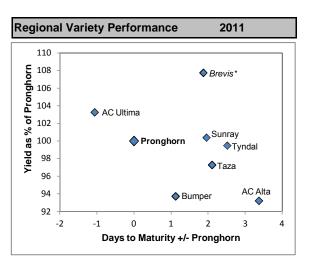
Triticale is a genetic cross (not a hybrid) developed by crossing wheat (*Triticum turgidum* or *Triticum aestivum*) with rye (*Secale cereal*). Most varieties of spring triticale currently available are approximately 10 days or more later maturing than CWRS wheat, and as such they should not be grown in the B.C. Peace River region for grain production. However, a few varieties are proving to be earlier than traditional spring triticale varieties, and perhaps as breeding continues earlier lines may come along that can be grown here for grain with a consistant and early enough maturity. Their high grain yields are "attention grabbers", and so it is worth watching their development, especially as triticale seems to hold a lot of potential for ethanol production in the Peace River region if breeding efforts could produce earlier maturing lines. Drought tolerance is the primary advantage that spring triticales have over other spring cereal crops. Spring triticales are also a valuable alternative or compliment to barley & oat as forage feed, but current triticale lines do tend to have low resistance to Ergot, likely due to late maturity. This may become less of a concern as earlier lines are bred. It is for these reasons, especially its potential use as a high volume ethanol feedstock, that data is included in this report.

Spring Tritical	е								Yield	as %	of Prong	ghorn	
			Dawson C	Creek				Fort St. Jo	ohn		B	C. Peace	
		2011 \	/ield	2006-2	2011	20	` 011	Yield	2006-	2011	2011	2006-2	011
Variety	bus acre	1	% of check	Avg. (%)	Stn. Yrs.	bus / acre		% of check	Avg. (%)	Stn. Yrs.	Avg. (%)	Avg. (%)	Stn. Yrs.
AC Alta	158	е	92	97	[5]	175	с	95	105	[5]	93	101	[10]
AC Ultima	185	ab	107	107	[6]	184	b	99	93	[6]	103	100	[12]
Brevis*	192	а	111	111	[1]	193	а	105	105	[1]	108	108	[2]
Bumper	164	de	95	102	[3]	171	с	93	100	[3]	94	101	[6]
Pronghorn	173	bcd	100	100	[6]	185	b	100	100	[6]	100	100	[12]
Sunray	174	bcd	100	97	[2]	185	b	100	103	[2]	100	100	[4]
Taza	169	cde	98	99	[2]	179	bc	97	97	[2]	97	98	[4]
Tyndal	177	bc	103	116	[6]	178	bc	96	100	[6]	99	108	[12]
LSD (P=.0	05) = 9.4	9				5.88	5						
CV value ((%) = 3.7	1				2.21							

Means followed by the same letter do not significantly differ (P=.05, LSD)


* first year tested, very limited data available Δ denotes materials not registered, very limited data available


Pronghorn - check variety


Protected by Plant Breeders' Rights

Spring Triticale							Variety Descriptions						
							Alberta Agdex 100/32						
							Resistance to:						
		Maturity as days +/- check	Height (cm)	Bushel Weight <u>(Ibs/bus</u>)	TKW (g / 1000)	_	Lodging	Loose Smut	Common Bunt	Sprouting	FHB	Distributor	
	AC Alta	9.4	81	55	51							Progressive Seeds	
	AC Ultima	-4.0	85	58	45		G	VG	VG	F	F	FP Genetics	
	Brevis*	1.9	110	63	51		XX	XX	XX	XX	XX	Wagon Wheel Seed Corp.	
	 Bumper 	-0.1	82	60	45	'	٧G	XX	VG	F	Ρ	SeCan	
	Pronghorn	0.0	87	57	44		G	VG	VG	F	G	Progressive Seeds	
	Sunray	-0.5	93	58	45	'	٧G	VG	VG	F	VP	SeedNet	
	Taza	-1.5	103	58	46		XX	XX	VG	XX	VP	Solick Seeds	
	Tyndal	1.9	87	58	44		G	VG	VG	Ρ	Ρ	SeCan	

VG= very good, G = good, F = fair, P = poor, VP = very poor; XX = insufficient data

Average maturity for Pronghorn is 121 days for 2011